Diagnosis of Interturn Short-Circuit Faults in Permanent Magnet Synchronous Motors Based on Few-Shot Learning Under a Federated Learning Framework

A large amount of labeled data are important to enhance the performance of deep-learning-based methods in the area of fault diagnosis. Because it is difficult to obtain high-quality samples in real industrial applications, federated learning is an effective framework for solving the problem of spars...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 17; číslo 12; s. 8495 - 8504
Hlavní autoři: Zhang, Jinglin, Wang, Yanbo, Zhu, Kai, Zhang, Yi, Li, Yuanjiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A large amount of labeled data are important to enhance the performance of deep-learning-based methods in the area of fault diagnosis. Because it is difficult to obtain high-quality samples in real industrial applications, federated learning is an effective framework for solving the problem of sparse samples by using the distributed data. Its global model is updated by the local client without sharing data at each round. Considering computing resources and communication loss of multiple clients, an efficient method based on stacked sparse autoencoders (SSAEs) and Siamese networks is proposed to detect interturn short-circuit (ITSC) faults in permanent magnet synchronous motors. In this article, to achieve an accurate ITSC fault detection, an SSAE was employed to extract sparse features in a limited number of samples, and Siamese networks were used to determine the similarity between the given samples. The problem of fault diagnosis is transformed into a classification problem under few-shot learning. Furthermore, the proposed method is trained successfully in the frameworks of centralized learning and decentralized structure. The experimental results indicate that the proposed method achieved high fault diagnosis accuracy. Moreover, it is suitable for deployment in smart manufacturing systems.
AbstractList A large amount of labeled data are important to enhance the performance of deep-learning-based methods in the area of fault diagnosis. Because it is difficult to obtain high-quality samples in real industrial applications, federated learning is an effective framework for solving the problem of sparse samples by using the distributed data. Its global model is updated by the local client without sharing data at each round. Considering computing resources and communication loss of multiple clients, an efficient method based on stacked sparse autoencoders (SSAEs) and Siamese networks is proposed to detect interturn short-circuit (ITSC) faults in permanent magnet synchronous motors. In this article, to achieve an accurate ITSC fault detection, an SSAE was employed to extract sparse features in a limited number of samples, and Siamese networks were used to determine the similarity between the given samples. The problem of fault diagnosis is transformed into a classification problem under few-shot learning. Furthermore, the proposed method is trained successfully in the frameworks of centralized learning and decentralized structure. The experimental results indicate that the proposed method achieved high fault diagnosis accuracy. Moreover, it is suitable for deployment in smart manufacturing systems.
Author Wang, Yanbo
Zhang, Yi
Zhang, Jinglin
Zhu, Kai
Li, Yuanjiang
Author_xml – sequence: 1
  givenname: Jinglin
  orcidid: 0000-0001-7499-1992
  surname: Zhang
  fullname: Zhang, Jinglin
  email: jinglin.zhang37@gmail.com
  organization: School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
– sequence: 2
  givenname: Yanbo
  orcidid: 0000-0002-0787-7361
  surname: Wang
  fullname: Wang, Yanbo
  email: 243334258@qq.com
  organization: Jiangsu University of Science and Technology, Zhenjiang, China
– sequence: 3
  givenname: Kai
  orcidid: 0000-0003-1693-0336
  surname: Zhu
  fullname: Zhu, Kai
  email: fatkyo@jsut.edu.cn
  organization: Jiangsu University of Technology, Changzhou, China
– sequence: 4
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  email: 273086243@qq.com
  organization: Jiangsu University of Science and Technology, Zhenjiang, China
– sequence: 5
  givenname: Yuanjiang
  orcidid: 0000-0003-3959-8065
  surname: Li
  fullname: Li, Yuanjiang
  email: liyuanjiang@just.edu.cn
  organization: Jiangsu University of Science and Technology, Zhenjiang, China
BookMark eNp9kE1LAzEQhoMo-HkXvAQ8b83nbveo1WqhoqCel2x2VqNtopMs4t_wF5tS6cGDpxmY95lhnn2y7YMHQo45G3HO6rPH2WwkmOAjycqq5nqL7PFa8YIxzbZzrzUvpGByl-zH-MqYrJis98j3pTPPPkQXaejpzCfANKCnDy8BUzFxaAeX6NQMixSp8_QecGk8-ERvMweJPnx5-4LBhyHS25ACRnphInQ0eDqFzyIvSnQOBr3zz_TJd4DU5EmuJuXYZjRFs4TPgG-HZKc3iwhHv_WAPE2vHic3xfzuejY5nxdW1DwVdtxXXdfKVmsrteHC9p2SzLStUYrXlnWt4Fr0ZVn1quSmLvuuq9rSqjHnrQJ5QE7Xe98xfAwQU_Ma8uv5ZCN0qYXKXmVOleuUxRAjQt9Yl0xywSc0btFw1qz8N9l_s_Lf_PrPIPsDvqNbGvz6DzlZIw4ANvFajpVQWv4ABX2UkA
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TIM_2024_3522658
crossref_primary_10_3390_machines13090815
crossref_primary_10_1109_TIM_2022_3196736
crossref_primary_10_1016_j_engappai_2024_107938
crossref_primary_10_1093_jcde_qwae052
crossref_primary_10_3390_app12189286
crossref_primary_10_3390_en18030534
crossref_primary_10_1109_JSEN_2024_3423751
crossref_primary_10_3390_pr11010082
crossref_primary_10_1109_TII_2022_3210600
crossref_primary_10_1109_TCSS_2023_3244188
crossref_primary_10_1109_TMECH_2023_3270901
crossref_primary_10_1088_1361_6501_acf6d8
crossref_primary_10_1016_j_ijepes_2024_110402
crossref_primary_10_1109_TII_2022_3228902
crossref_primary_10_1016_j_apacoust_2022_108724
crossref_primary_10_1109_TII_2023_3281664
crossref_primary_10_1049_cim2_12057
crossref_primary_10_1016_j_eswa_2024_124256
crossref_primary_10_1109_JIOT_2024_3522327
crossref_primary_10_1109_TII_2023_3242773
crossref_primary_10_1016_j_knosys_2024_112848
crossref_primary_10_3390_jmse10060743
crossref_primary_10_1109_TII_2024_3424581
crossref_primary_10_1016_j_neucom_2025_130574
crossref_primary_10_1016_j_epsr_2025_111648
crossref_primary_10_1007_s12559_023_10218_4
crossref_primary_10_1109_TIE_2021_3125653
crossref_primary_10_1109_TIM_2025_3550635
crossref_primary_10_1109_JIOT_2022_3153343
crossref_primary_10_1016_j_ymssp_2023_110413
crossref_primary_10_1109_TIM_2023_3285999
crossref_primary_10_1016_j_asoc_2025_112785
crossref_primary_10_1016_j_eswa_2023_120956
crossref_primary_10_1109_TCBB_2022_3184319
crossref_primary_10_1109_TIM_2025_3545531
crossref_primary_10_1016_j_inffus_2024_102876
crossref_primary_10_1109_TII_2022_3201011
crossref_primary_10_1088_1361_6501_ac7a09
crossref_primary_10_1088_1361_6501_adb872
crossref_primary_10_3390_drones7060380
crossref_primary_10_1109_TIM_2023_3328073
crossref_primary_10_1109_ACCESS_2024_3407121
crossref_primary_10_1088_1361_6501_aced5d
crossref_primary_10_1109_ACCESS_2022_3169149
crossref_primary_10_3390_machines10110972
crossref_primary_10_1016_j_rser_2023_113612
crossref_primary_10_1109_TTE_2025_3555271
crossref_primary_10_1016_j_aei_2024_102976
crossref_primary_10_1016_j_knosys_2025_113277
crossref_primary_10_1109_TIM_2023_3317930
crossref_primary_10_3390_electronics12010158
crossref_primary_10_1109_TIM_2024_3509588
crossref_primary_10_1109_TIM_2023_3315356
crossref_primary_10_1109_TIE_2023_3265054
crossref_primary_10_1109_TIE_2024_3443964
crossref_primary_10_1088_1361_6501_acf7da
crossref_primary_10_1016_j_measurement_2023_113446
crossref_primary_10_1007_s10845_023_02103_6
crossref_primary_10_1016_j_engappai_2023_107125
crossref_primary_10_1016_j_procir_2023_06_155
crossref_primary_10_1109_TIM_2022_3220269
crossref_primary_10_1016_j_neucom_2024_127956
crossref_primary_10_3390_electronics12183758
crossref_primary_10_1080_10589759_2025_2512557
crossref_primary_10_1109_TMECH_2023_3331712
crossref_primary_10_17780_ksujes_1723915
crossref_primary_10_1109_TIE_2023_3273272
crossref_primary_10_1016_j_engappai_2024_109577
crossref_primary_10_1088_1361_6501_ad19c0
crossref_primary_10_1109_TIE_2024_3368160
crossref_primary_10_1109_JSEN_2024_3471785
crossref_primary_10_1109_TIM_2023_3276513
crossref_primary_10_1109_JIOT_2023_3243401
crossref_primary_10_1109_JIOT_2023_3282899
Cites_doi 10.1016/j.ymssp.2019.106608
10.1016/j.measurement.2016.04.007
10.1109/CVPR.2005.202
10.1007/978-3-642-19712-3_53
10.1109/ECCE.2015.7309970
10.1016/j.cie.2020.106854
10.1109/ACCESS.2018.2890693
10.1109/TIE.2018.2879281
10.1109/ACCESS.2019.2934233
10.3311/PPee.13658
10.1109/TII.2019.2944413
10.1109/TPEL.2015.2388493
10.1109/TPEL.2013.2265400
10.1016/j.knosys.2020.106679
10.1109/JESTPE.2018.2811538
10.1109/TIE.2017.2688973
10.1016/j.ymssp.2017.09.026
10.1109/ACCESS.2019.2917604
10.1109/GLOCOM.2018.8647649
10.1109/JSEN.2020.2965988
10.1016/j.ymssp.2018.03.025
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2021.3067915
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 8504
ExternalDocumentID 10_1109_TII_2021_3067915
9384245
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41775008; 51977101; 61702275
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-c8f7ddb3b55c35a12cfd430abba4419c0db2152f667f461a96fdd7b6c4811b4e3
IEDL.DBID RIE
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690940600061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Nov 24 16:10:51 EST 2025
Sat Nov 29 04:16:57 EST 2025
Tue Nov 18 22:00:26 EST 2025
Wed Aug 27 02:28:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c8f7ddb3b55c35a12cfd430abba4419c0db2152f667f461a96fdd7b6c4811b4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7499-1992
0000-0003-1693-0336
0000-0003-3959-8065
0000-0002-0787-7361
PQID 2565241103
PQPubID 85507
PageCount 10
ParticipantIDs ieee_primary_9384245
crossref_citationtrail_10_1109_TII_2021_3067915
crossref_primary_10_1109_TII_2021_3067915
proquest_journals_2565241103
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref15
ref14
ref11
ref22
ref10
lyu (ref1) 2020
ref21
ref2
ref17
ref16
ref19
ref18
ref8
ref7
xie (ref23) 2015
ref9
ref4
ref3
ref6
ref5
mcmahan (ref20) 2017
References_xml – ident: ref14
  doi: 10.1016/j.ymssp.2019.106608
– ident: ref9
  doi: 10.1016/j.measurement.2016.04.007
– year: 2020
  ident: ref1
  article-title: Privacy and robustness in federated learning: Attacks and defenses
– ident: ref22
  doi: 10.1109/CVPR.2005.202
– ident: ref24
  doi: 10.1007/978-3-642-19712-3_53
– ident: ref8
  doi: 10.1109/ECCE.2015.7309970
– ident: ref18
  doi: 10.1016/j.cie.2020.106854
– ident: ref16
  doi: 10.1109/ACCESS.2018.2890693
– ident: ref5
  doi: 10.1109/TIE.2018.2879281
– ident: ref12
  doi: 10.1109/ACCESS.2019.2934233
– ident: ref6
  doi: 10.3311/PPee.13658
– ident: ref2
  doi: 10.1109/TII.2019.2944413
– start-page: 869
  year: 2015
  ident: ref23
  article-title: A fault diagnosis approach using SVM with data dimension reduction by PCA and LDA method
  publication-title: Proc Chin Autom Congr
– ident: ref7
  doi: 10.1109/TPEL.2015.2388493
– start-page: 1273
  year: 2017
  ident: ref20
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– ident: ref21
  doi: 10.1109/TPEL.2013.2265400
– ident: ref17
  doi: 10.1016/j.knosys.2020.106679
– ident: ref4
  doi: 10.1109/JESTPE.2018.2811538
– ident: ref3
  doi: 10.1109/TIE.2017.2688973
– ident: ref11
  doi: 10.1016/j.ymssp.2017.09.026
– ident: ref15
  doi: 10.1109/ACCESS.2019.2917604
– ident: ref19
  doi: 10.1109/GLOCOM.2018.8647649
– ident: ref10
  doi: 10.1109/JSEN.2020.2965988
– ident: ref13
  doi: 10.1016/j.ymssp.2018.03.025
SSID ssj0037039
Score 2.5713055
Snippet A large amount of labeled data are important to enhance the performance of deep-learning-based methods in the area of fault diagnosis. Because it is difficult...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8495
SubjectTerms Artificial neural networks
Circuit faults
Data models
Deep learning
Fault detection
Fault diagnosis
Feature extraction
Federated learning
federated learning (FL)
few-shot learning
Industrial applications
interturn short circuit (ITSC)
Machine learning
permanent magnet synchronous motor (PMSM)
Permanent magnets
Short circuits
Smart manufacturing
stacked sparse autoencoder (SSAE)
Synchronous motors
Training
Title Diagnosis of Interturn Short-Circuit Faults in Permanent Magnet Synchronous Motors Based on Few-Shot Learning Under a Federated Learning Framework
URI https://ieeexplore.ieee.org/document/9384245
https://www.proquest.com/docview/2565241103
Volume 17
WOSCitedRecordID wos000690940600061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS91AFB5UXNiFrbXF29pyFt0UHO9MJo87Sx8NdaEIWnAXMq82IIncJEr_hr_YM5PkKrQUugvMI4Fvcs43c86cj5AvBmF2meHUWJnQ2JqUSqkN9REgJOSuFMoFsYns4mJxcyMv18jB6i6MtTYkn9lD_xhi-abRvT8qm0ux8IG6dbKeZelwV2uyugJXrgy1URNORcTEFJJkcn59doYbwYgfenosvQDuCxcUNFX-MMTBu-Sv_--73pDtkUXC0QD7Dlmz9Vvy6kVtwV3yeDok0VUtNA7CwR96lxqufiHhpifVUvdVB3nZ33YtVDVcehNd43vgHMfZDq5-19pXzm36Fs4bL8oDx-jyDDQ15PaB4kQdjOVZf0LQT4ISW3wpT6Sxz035lP_1jvzIv12ffKejAAPViFRH9QJhNEqoJNEiKXmknYkFK5UqkUVJzYzysrguTTMXp7yUqTMmU6mOF5yr2Ir3ZKNuartHAGkjUr9MG-aS2IsCRhFzivMstZJJlszIfMKk0GN1ci-ScVuEXQqTBaJYeBSLEcUZ-boacTdU5vhH312P2qrfCNiM7E-wF-Ov2xbIAROkNZyJD38f9ZFs-bmHnJZ9stEte_uJbOr7rmqXn8OqfAKFN-CI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1di9QwFL2sq6A--LWKo6vmwRfB7CRN004edbXs4M6wsCPsW2nzsRaWVqat4t_wF3uTtuOCIvhWSNIUTnrvSe7NPQCvDcLsUsOpsUrS2JqEKqUN9REgJOSuEKULYhPper24uFBne_B2dxfGWhuSz-yRfwyxfNPo3h-VzZVY-EDdDbgp4zhiw22tye4KXLsqVEeVnIqIiSkoydR8s1ziVjDiR54gKy-Be80JBVWVP0xx8C_Z_f_7sgdwb-SR5N0A_EPYs_UjuHutuuAB_PwwpNFVLWkcCUd_6F9qcv4FKTc9rra6rzqSFf1V15KqJmfeSNc4D1nhONuR8x-19rVzm74lq8bL8pD36PQMaWqS2e8UX9SRsUDrJQkKSqTAFl_ME4ns76ZsygB7DJ-zj5vjEzpKMFCNWHVULxBIU4pSSi1kwSPtTCxYUZYF8iilmSm9MK5LktTFCS9U4oxJy0THC87L2IonsF83tX0KBIkjkr9UG-Zk7GUBo4i5kvM0sYopJmcwnzDJ9Vif3MtkXOVhn8JUjijmHsV8RHEGb3Yjvg61Of7R98Cjtus3AjaDwwn2fPx52xxZoERiw5l49vdRr-D2yWZ1mp8u15-ewx0_z5Dhcgj73ba3L-CW_tZV7fZlWKG_AFep488
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Interturn+Short-Circuit+Faults+in+Permanent+Magnet+Synchronous+Motors+Based+on+Few-Shot+Learning+Under+a+Federated+Learning+Framework&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Zhang%2C+Jinglin&rft.au=Wang%2C+Yanbo&rft.au=Zhu%2C+Kai&rft.au=Zhang%2C+Yi&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=12&rft.spage=8495&rft_id=info:doi/10.1109%2FTII.2021.3067915&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon