Real-Time Optimization of Energy Management Strategy for Fuel Cell Vehicles Using Inflated 3D Inception Long Short-Term Memory Network-Based Speed Prediction

The performance of speed prediction-based energy management strategy (EMS) for fuel cell vehicles (FCVs) highly relies on the accuracy of predicted speed sequences. Therefore, the future speed sequences are estimated by Inflated 3D Inception long short-term memory (LSTM) network, which can use the h...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology Vol. 70; no. 2; pp. 1190 - 1199
Main Authors: Zhang, Caizhi, Zhang, Yuanzhi, Huang, Zhiyu, Lv, Chen, Hao, Dong, Liang, Chen, Deng, Chenghao, Chen, Jinrui
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9545, 1939-9359
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The performance of speed prediction-based energy management strategy (EMS) for fuel cell vehicles (FCVs) highly relies on the accuracy of predicted speed sequences. Therefore, the future speed sequences are estimated by Inflated 3D Inception long short-term memory (LSTM) network, which can use the historical speed and image information to improve the accuracy of speed prediction. Meanwhile, the energy economy and powertrain system durability are the objectives of real-time optimization. For optimizing energy economy and powertrain system durability of FCVs, the real-time optimization of EMS using the Inflated 3D Inception LSTM network-based speed prediction is proposed. To do this, the mathematical models including energy economy and powertrain system durability of FCVs are developed at the beginning. Then, based on the predicted speed sequences, a real-time optimization method with sequential quadratic programming (SQP) algorithm is proposed to minimize the energy consumption and take into consideration powertrain system degradation in the prediction horizon. Simulation results show that the proposed EMS can significantly reduce the total cost of energy consumption and powertrain system degradation.
AbstractList The performance of speed prediction-based energy management strategy (EMS) for fuel cell vehicles (FCVs) highly relies on the accuracy of predicted speed sequences. Therefore, the future speed sequences are estimated by Inflated 3D Inception long short-term memory (LSTM) network, which can use the historical speed and image information to improve the accuracy of speed prediction. Meanwhile, the energy economy and powertrain system durability are the objectives of real-time optimization. For optimizing energy economy and powertrain system durability of FCVs, the real-time optimization of EMS using the Inflated 3D Inception LSTM network-based speed prediction is proposed. To do this, the mathematical models including energy economy and powertrain system durability of FCVs are developed at the beginning. Then, based on the predicted speed sequences, a real-time optimization method with sequential quadratic programming (SQP) algorithm is proposed to minimize the energy consumption and take into consideration powertrain system degradation in the prediction horizon. Simulation results show that the proposed EMS can significantly reduce the total cost of energy consumption and powertrain system degradation.
Author Zhang, Caizhi
Liang, Chen
Hao, Dong
Huang, Zhiyu
Zhang, Yuanzhi
Deng, Chenghao
Lv, Chen
Chen, Jinrui
Author_xml – sequence: 1
  givenname: Caizhi
  orcidid: 0000-0002-2060-4245
  surname: Zhang
  fullname: Zhang, Caizhi
  email: m110050@e.ntu.edu.sg
  organization: School of Automotive Engineering, State Key Laboratory of Mechanical Transmissions, Chongqing Automotive Collaborative Innovation Center, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Yuanzhi
  orcidid: 0000-0001-8361-163X
  surname: Zhang
  fullname: Zhang, Yuanzhi
  email: zhangyuanzhi54@163.com
  organization: School of Automotive Engineering, State Key Laboratory of Mechanical Transmissions, Chongqing Automotive Collaborative Innovation Center, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Zhiyu
  orcidid: 0000-0003-1592-7215
  surname: Huang
  fullname: Huang, Zhiyu
  email: zhiyu001@e.ntu.edu.sg
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 4
  givenname: Chen
  orcidid: 0000-0001-6897-4512
  surname: Lv
  fullname: Lv, Chen
  email: lyuchen@ntu.edu.sg
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 5
  givenname: Dong
  surname: Hao
  fullname: Hao, Dong
  email: haodong@catarc.ac.cn
  organization: China Automotive Technology & Research Center Co., Ltd., Tianjin, China
– sequence: 6
  givenname: Chen
  surname: Liang
  fullname: Liang, Chen
  email: liangchenfcv@126.com
  organization: National New Energy Vehicle Technology Innovation Center, Beijing, China
– sequence: 7
  givenname: Chenghao
  surname: Deng
  fullname: Deng, Chenghao
  email: dengch@changan.com.cn
  organization: Propulsion Research Institute of Chongqing Changan New Energy Vehicle Technology Co., Ltd., Chongqing, China
– sequence: 8
  givenname: Jinrui
  surname: Chen
  fullname: Chen, Jinrui
  email: chenjr@changan.com.cn
  organization: Propulsion Research Institute of Chongqing Changan New Energy Vehicle Technology Co., Ltd., Chongqing, China
BookMark eNp9kUtPGzEUha0KpIbHvlI3lrqe1K-ZxEuaQosUoCID29HFcycYZuyp7ahK_0v_ax2CWHTRjR_X57vWPeeIHDjvkJAPnE05Z_pzfV9PBRN8KlnJBePvyIRrqQstS31AJozxeaFLVb4nRzE-5atSmk_In1uEvqjtgPRmTHawvyFZ76jv6LnDsN7SK3CwxgFdoqsUIGGudT7Qiw32dIF9T-_x0ZoeI72L1q3ppev6LGup_JrPBseXhkufn1aPPqSixjDQKxx82NJrTL98eC6-QMzEasS8_gjYWrOjTshhB33E09f9mNxdnNeL78Xy5tvl4mxZGKF5KswcWtVCJ6RoH1Q5m1WyYvCglGmlgOxKKzoB8zyzlBpg1nbcKDQSQDOpmJHH5NO-7xj8zw3G1Dz5TXD5y0aUjEshKiWyqtqrTPAxBuwaY9OLXdkX2zecNbsomhxFs4uieY0ig-wfcAx2gLD9H_Jxj1hEfJNrKVjFSvkXLFKXfg
CODEN ITVTAB
CitedBy_id crossref_primary_10_1002_ente_202300099
crossref_primary_10_1016_j_conengprac_2025_106286
crossref_primary_10_1016_j_measen_2024_101225
crossref_primary_10_1016_j_rser_2025_116122
crossref_primary_10_1016_j_ijft_2025_101119
crossref_primary_10_1109_TITS_2024_3384358
crossref_primary_10_1109_TIV_2023_3268051
crossref_primary_10_1109_TVT_2022_3168870
crossref_primary_10_1109_TVT_2022_3205879
crossref_primary_10_1016_j_ijhydene_2023_01_160
crossref_primary_10_1016_j_energy_2022_123098
crossref_primary_10_1016_j_ijhydene_2022_01_064
crossref_primary_10_1177_09544070241228641
crossref_primary_10_1016_j_energy_2022_123474
crossref_primary_10_1016_j_renene_2024_121745
crossref_primary_10_1016_j_ijhydene_2024_08_013
crossref_primary_10_1109_TTE_2022_3212866
crossref_primary_10_1016_j_apenergy_2023_122228
crossref_primary_10_1016_j_ijhydene_2022_08_176
crossref_primary_10_1038_s41598_025_19592_5
crossref_primary_10_1016_j_heliyon_2023_e19966
crossref_primary_10_1016_j_ress_2023_109660
crossref_primary_10_1016_j_ijhydene_2024_05_048
crossref_primary_10_1016_j_enconman_2024_119374
crossref_primary_10_1049_tje2_12210
crossref_primary_10_1002_ente_202300541
crossref_primary_10_1002_fuce_202200121
crossref_primary_10_1109_TITS_2023_3330941
crossref_primary_10_1109_TITS_2023_3330008
crossref_primary_10_3390_s23208571
crossref_primary_10_1109_TPEL_2024_3422679
crossref_primary_10_1016_j_enconman_2023_116921
crossref_primary_10_1109_TTE_2024_3400020
crossref_primary_10_3390_buildings14123972
crossref_primary_10_1016_j_apenergy_2024_123486
crossref_primary_10_1016_j_ijhydene_2023_01_110
Cites_doi 10.1109/TVT.2011.2177483
10.1016/j.ijhydene.2008.04.048
10.1016/j.enconman.2016.11.007
10.1109/TIE.2019.2945295
10.1016/j.energy.2019.04.110
10.1109/TVT.2015.2456232
10.1109/TPEL.2019.2915675
10.1109/TIE.2014.2308148
10.1016/j.jpowsour.2018.05.078
10.1016/j.jpowsour.2019.04.118
10.1016/j.apenergy.2016.02.026
10.1002/9781118878330
10.1109/TTE.2019.2958038
10.1109/TITS.2016.2580318
10.1016/j.jpowsour.2013.10.145
10.1016/j.apenergy.2020.115293
10.1109/TTE.2019.2915689
10.1109/CVPR.2015.7298594
10.1016/j.energy.2020.118319
10.1002/asjc.2146
10.1007/s11432-018-9690-y
10.1016/j.apenergy.2014.06.087
10.1016/j.ymssp.2019.07.009
10.1109/TII.2020.3033980
10.1016/j.enconman.2016.09.082
10.1109/TII.2016.2618886
10.1109/CVPR.2017.502
10.1109/TIE.2020.2994868
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2021.3051201
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 1199
ExternalDocumentID 10_1109_TVT_2021_3051201
9320605
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019CDXYQC0003; 244005202014; 2018CDXYTW0031
  funderid: 10.13039/501100012226
– fundername: Graduate Scientific Research and Innovation Foundation of Chongqing
  grantid: CYS19020
– fundername: Chongqing Research Program of Foundation and Advanced Technology
  grantid: cstc2017jcyjAX0276
– fundername: National Key Research and Development Program of China; National Key Research and Development Program
  grantid: 2018YFB0105402
  funderid: 10.13039/501100012166
– fundername: Tianjin Municipal Science and Technology Commission Program
  grantid: 17ZXFWGX00040
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-c8ad4daf232db45776360ab44cd32a202d2f2a8014339aa7df1c4ec3aa90340c3
IEDL.DBID RIE
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000628913700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:19:56 EDT 2025
Tue Nov 18 21:27:23 EST 2025
Sat Nov 29 02:58:54 EST 2025
Wed Aug 27 02:28:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c8ad4daf232db45776360ab44cd32a202d2f2a8014339aa7df1c4ec3aa90340c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2060-4245
0000-0001-8361-163X
0000-0001-6897-4512
0000-0003-1592-7215
PQID 2501322642
PQPubID 85454
PageCount 10
ParticipantIDs crossref_primary_10_1109_TVT_2021_3051201
ieee_primary_9320605
proquest_journals_2501322642
crossref_citationtrail_10_1109_TVT_2021_3051201
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
abas (ref8) 2011; 1
fletcher (ref30) 2013
ref24
ref23
ref26
ref20
ref22
ref21
(ref25) 2018
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/TVT.2011.2177483
– ident: ref22
  doi: 10.1016/j.ijhydene.2008.04.048
– ident: ref21
  doi: 10.1016/j.enconman.2016.11.007
– ident: ref11
  doi: 10.1109/TIE.2019.2945295
– ident: ref14
  doi: 10.1016/j.energy.2019.04.110
– ident: ref13
  doi: 10.1109/TVT.2015.2456232
– ident: ref29
  doi: 10.1109/TPEL.2019.2915675
– ident: ref20
  doi: 10.1109/TIE.2014.2308148
– year: 2018
  ident: ref25
  article-title: The comma.ai speed prediction challenge
– ident: ref15
  doi: 10.1016/j.jpowsour.2018.05.078
– ident: ref18
  doi: 10.1016/j.jpowsour.2019.04.118
– ident: ref31
  doi: 10.1016/j.apenergy.2016.02.026
– ident: ref19
  doi: 10.1002/9781118878330
– ident: ref5
  doi: 10.1109/TTE.2019.2958038
– ident: ref9
  doi: 10.1109/TITS.2016.2580318
– ident: ref12
  doi: 10.1016/j.jpowsour.2013.10.145
– ident: ref16
  doi: 10.1016/j.apenergy.2020.115293
– ident: ref4
  doi: 10.1109/TTE.2019.2915689
– ident: ref28
  doi: 10.1109/CVPR.2015.7298594
– ident: ref7
  doi: 10.1016/j.energy.2020.118319
– volume: 1
  start-page: 21
  year: 2011
  ident: ref8
  article-title: Vehicle's velocity time series prediction using neural network
  publication-title: Int J Automot Eng
– ident: ref3
  doi: 10.1002/asjc.2146
– ident: ref2
  doi: 10.1007/s11432-018-9690-y
– ident: ref24
  doi: 10.1016/j.apenergy.2014.06.087
– ident: ref10
  doi: 10.1016/j.ymssp.2019.07.009
– ident: ref26
  doi: 10.1109/TII.2020.3033980
– ident: ref23
  doi: 10.1016/j.enconman.2016.09.082
– ident: ref6
  doi: 10.1109/TII.2016.2618886
– ident: ref27
  doi: 10.1109/CVPR.2017.502
– ident: ref1
  doi: 10.1109/TIE.2020.2994868
– year: 2013
  ident: ref30
  publication-title: Practical Methods of Optimization
SSID ssj0014491
Score 2.5192344
Snippet The performance of speed prediction-based energy management strategy (EMS) for fuel cell vehicles (FCVs) highly relies on the accuracy of predicted speed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1190
SubjectTerms Accuracy
Algorithms
Degradation
Durability
Electric vehicles
Energy consumption
Energy management
energy management strategy
Fuel cell vehicles
Fuel cells
Inflated 3D Inception LSTM network
Lithium-ion batteries
Mechanical power transmission
Optimization
Powertrain
Quadratic programming
Real time
Real-time optimization
Real-time systems
Sequences
sequential quadratic programming algorithm
State of charge
Title Real-Time Optimization of Energy Management Strategy for Fuel Cell Vehicles Using Inflated 3D Inception Long Short-Term Memory Network-Based Speed Prediction
URI https://ieeexplore.ieee.org/document/9320605
https://www.proquest.com/docview/2501322642
Volume 70
WOSCitedRecordID wos000628913700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5VPOjBt1hfzMGL4NrdTbppjr6KglbRKr0t2SRLhbUtfQj-GP-rk2xaBUXwFtgkLJkk803mmxlCDrlE0CqTJEDVE9mnGx1kCg8ey7nNfybrgpbFJnir1eh0xH2FHM9iYYwxjnxmTmzT-fJ1X03sU1kNsUaY2ISlc5wnZazWzGPAmK-OF-EBRlgwdUmGotZ-bqMhGEcnuLej2Jd_maogV1Plx0XstEtz5X__tUqWPYqE01Lsa6Rieutk6VtuwQ3y8YAQMLARHnCH18Krj7eEfg6XLt4Pvpgv4HPUvgNCWGhOTAHnpijg2XQdaw4csQCue3mB3TTQC2x7Pgzc9PHTYxdhfNDGax5uLXf3HVolvzw4QzWp4XGAWhLuh9YtZEdtkqfmZfv8KvC1GAIVi2gcqIbUTMscAZjOWB3XnyahzBhTmsYSV1fHeSxtKhpKhZRc55FiRlEpRUhZqOgWme_1e2abQJYjqKK5RmgqGNOR5Fm9keAsPOFUKFEltal4UuUTldt6GUXqDJZQpCjQ1Ao09QKtkqPZiEGZpOOPvhtWgLN-XnZVsjfdAak_xaMU4aE11tFE2_l91C5ZtHOXLO49Mj8eTsw-WVBv45fR8MBt0E_O3-LD
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hQNp4ADaGVlbGPexl0kKT2I3rx_GjAq10aGSIt8ixHTEptKi0SP1j-F85O243adMk3iLFTqKc7fvs--47gE9CEWhVWRaR60nc0Y2JSk0Tj1fC6Z-prmRNsQkxHPZubuTlCnxZ5sJYaz35zB66Sx_LN2M9c0dlHcIaceYES9e6nKdxk621jBlwHurjJTSFCRgsgpKx7OTXOW0F0-SQRneShgIwCyfkq6r8tRR7_9LfetmXbcNmwJH4tTH8G1ixo7ew8Ye64A48_SAQGLkcD_xOC8NdyLjEcYWnPuMPf3NfMKjUzpFALPZntsZjW9d4bW89bw49tQDPR1VNzQyyE7oOjBgcjOnW1S0B-SinhR4vHHt3jsOGYR4dkaM0eHVPfhIvJy4w5Hq9g5_90_z4LArVGCKdymQa6Z4y3KiKIJgpeVcIpzSmSs61Yamiv2vSKlVOjIYxqZQwVaK51UwpGTMea7YLq6PxyL4HLCuCVawyBE4l5yZRouz2MnqKyASTWragszBPoYNUuauYURd-yxLLggxaOIMWwaAt-Lzscd_IdPyn7Y4z4LJdsF0L2osRUIR5_FAQQHTbddqk7f271wG8OssvBsXgfPjtA7x272k43W1YnU5mdh_W9eP018Pkox-sz73G5go
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Optimization+of+Energy+Management+Strategy+for+Fuel+Cell+Vehicles+Using+Inflated+3D+Inception+Long+Short-Term+Memory+Network-Based+Speed+Prediction&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhang%2C+Caizhi&rft.au=Zhang%2C+Yuanzhi&rft.au=Huang%2C+Zhiyu&rft.au=Lv%2C+Chen&rft.date=2021-02-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=70&rft.issue=2&rft.spage=1190&rft.epage=1199&rft_id=info:doi/10.1109%2FTVT.2021.3051201&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2021_3051201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon