An Enhanced Adaptive Unscented Kalman Filter for Vehicle State Estimation

Accurate vehicle state information is crucial for safe driving and dynamic control of vehicles. Vehicle state estimation under unknown noise conditions is an important research topic. A state estimation method based on enhanced adaptive unscented Kalman filter (EAUKF) is proposed to solve vehicle es...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 71; s. 1 - 12
Hlavní autoři: Zhang, Yingjie, Li, Ming, Zhang, Ying, Hu, Zuolei, Sun, Qingshuai, Lu, Biliang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate vehicle state information is crucial for safe driving and dynamic control of vehicles. Vehicle state estimation under unknown noise conditions is an important research topic. A state estimation method based on enhanced adaptive unscented Kalman filter (EAUKF) is proposed to solve vehicle estimation under unknown noise conditions. The general exponential attenuation adaptive Kalman filter algorithm does not attenuate the historical data enough when the noise statistics change rapidly, thus leading to the state variable's inaccurate estimation. To improve the estimation accuracy of vehicle state variables, the exponential attenuation factor <inline-formula> <tex-math notation="LaTeX">B </tex-math></inline-formula> was further designed according to the variation of noise variance, and the influence of the latest data on state estimation was more considered. Based on the longitudinal dynamics modeling, the EAUKF method is applied to vehicle state estimation. Compared with the standard exponential weighted adaptive Kalman filtering algorithm and the average weighted adaptive Kalman filtering algorithm, the state variable estimation accuracy of the vehicle in this article is improved.
AbstractList Accurate vehicle state information is crucial for safe driving and dynamic control of vehicles. Vehicle state estimation under unknown noise conditions is an important research topic. A state estimation method based on enhanced adaptive unscented Kalman filter (EAUKF) is proposed to solve vehicle estimation under unknown noise conditions. The general exponential attenuation adaptive Kalman filter algorithm does not attenuate the historical data enough when the noise statistics change rapidly, thus leading to the state variable’s inaccurate estimation. To improve the estimation accuracy of vehicle state variables, the exponential attenuation factor [Formula Omitted] was further designed according to the variation of noise variance, and the influence of the latest data on state estimation was more considered. Based on the longitudinal dynamics modeling, the EAUKF method is applied to vehicle state estimation. Compared with the standard exponential weighted adaptive Kalman filtering algorithm and the average weighted adaptive Kalman filtering algorithm, the state variable estimation accuracy of the vehicle in this article is improved.
Accurate vehicle state information is crucial for safe driving and dynamic control of vehicles. Vehicle state estimation under unknown noise conditions is an important research topic. A state estimation method based on enhanced adaptive unscented Kalman filter (EAUKF) is proposed to solve vehicle estimation under unknown noise conditions. The general exponential attenuation adaptive Kalman filter algorithm does not attenuate the historical data enough when the noise statistics change rapidly, thus leading to the state variable's inaccurate estimation. To improve the estimation accuracy of vehicle state variables, the exponential attenuation factor <inline-formula> <tex-math notation="LaTeX">B </tex-math></inline-formula> was further designed according to the variation of noise variance, and the influence of the latest data on state estimation was more considered. Based on the longitudinal dynamics modeling, the EAUKF method is applied to vehicle state estimation. Compared with the standard exponential weighted adaptive Kalman filtering algorithm and the average weighted adaptive Kalman filtering algorithm, the state variable estimation accuracy of the vehicle in this article is improved.
Author Lu, Biliang
Zhang, Ying
Li, Ming
Sun, Qingshuai
Zhang, Yingjie
Hu, Zuolei
Author_xml – sequence: 1
  givenname: Yingjie
  orcidid: 0000-0002-4170-6152
  surname: Zhang
  fullname: Zhang, Yingjie
  email: zhangyj@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Ming
  orcidid: 0000-0002-2505-2363
  surname: Li
  fullname: Li, Ming
  email: minglee@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Ying
  orcidid: 0000-0002-7557-2965
  surname: Zhang
  fullname: Zhang, Ying
  email: ying_zhang@nwpu.edu.cn
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Zuolei
  orcidid: 0000-0002-0635-7436
  surname: Hu
  fullname: Hu, Zuolei
  email: huzuolei@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
– sequence: 5
  givenname: Qingshuai
  orcidid: 0000-0001-6145-0599
  surname: Sun
  fullname: Sun, Qingshuai
  email: sunqs@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
– sequence: 6
  givenname: Biliang
  orcidid: 0000-0002-6023-295X
  surname: Lu
  fullname: Lu, Biliang
  email: lubiliang@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
BookMark eNp9kE1PAjEQhhuDiYDeTbxs4nlx-rVtj4SAEjEeBK-bbumGkqWLbTHx37sI8eDBzGEmk_eZj3eAer71FqFbDCOMQT0s5y8jAoSMKJbAQFygPuZc5KooSA_1AbDMFePFFRrEuAUAUTDRR_Oxz6Z-o72x62y81vvkPm228tFYn7rWs2522mcz1yQbsroN2bvdONPY7C3pZLNpTG6nk2v9NbqsdRPtzTkP0Wo2XU6e8sXr43wyXuSGKJxyIzglkgEHoYWSuuJrIgyhGsOxolhVVNREVoTVkptiTagw1HZBoALB6BDdn-buQ_txsDGV2_YQfLeyJIUQkinZjRmi4qQyoY0x2Lo0Lv3cmYJ2TYmhPNpWdraVR9vKs20dCH_Afeg-DF__IXcnxFlrf-VKSMkZ0G8SKnei
CODEN IEIMAO
CitedBy_id crossref_primary_10_1088_1361_665X_ad9441
crossref_primary_10_1109_ACCESS_2024_3435668
crossref_primary_10_1109_ACCESS_2025_3535521
crossref_primary_10_1109_TTE_2024_3361252
crossref_primary_10_1088_1361_6501_ade27f
crossref_primary_10_1109_TITS_2024_3517162
crossref_primary_10_1109_JIOT_2025_3556450
crossref_primary_10_1109_TIM_2023_3326229
crossref_primary_10_1109_TIM_2024_3413151
crossref_primary_10_1109_TIM_2024_3382744
crossref_primary_10_1109_TIM_2024_3509602
crossref_primary_10_1080_00423114_2023_2240447
crossref_primary_10_1109_TIM_2025_3554875
crossref_primary_10_53941_ijndi_2025_100010
crossref_primary_10_1109_JSEN_2025_3571061
crossref_primary_10_1080_00423114_2025_2531565
crossref_primary_10_1109_JIOT_2024_3395322
crossref_primary_10_1109_JAS_2025_125237
crossref_primary_10_1109_TIM_2024_3481544
Cites_doi 10.1109/TITS.2013.2284930
10.1109/ACCESS.2021.3081443
10.1109/LSP.2005.845592
10.1109/TII.2018.2828125
10.1109/TIM.2020.3024357
10.3390/s19061371
10.1007/978-3-662-46578-3_90
10.1109/TAC.2011.2178334
10.1109/TII.2020.3012003
10.1016/S0005-1098(97)00093-9
10.1109/TNS.2019.2953196
10.1109/TCST.2014.2309911
10.3724/SP.J.1004.2010.01007
10.1109/JIOT.2019.2940412
10.1175/1520-0493(1997)125<0040:ACOAKF>2.0.CO;2
10.1117/12.277178
10.1109/TMECH.2018.2870639
10.1109/ACCESS.2017.2771204
10.1016/j.ejcon.2019.05.006
10.1080/00423114.2016.1178391
10.1109/TAC.2012.2188424
10.1109/TVT.2018.2890418
10.1109/TCST.2015.2488597
10.1049/iet-cta.2013.0276
10.1109/TIM.2019.2955797
10.23919/ACC.2004.1383772
10.1109/ACCESS.2020.3030260
10.1109/TVT.2010.2045520
10.1109/PESGM.2017.8273755
10.1109/TIM.2020.2967138
10.1109/TMECH.2021.3065210
10.1109/TCST.2018.2790397
10.1117/12.324626
10.1109/TIM.2011.2179342
10.1109/TIM.2021.3097401
10.1109/TVT.2021.3100988
10.1109/ACCESS.2019.2895413
10.1109/TIM.2018.2890317
10.1049/iet-its.2019.0458
10.1109/IWISA.2009.5073206
10.1109/JAS.2017.7510811
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3180407
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2022_3180407
9788540
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC) named On the Theory and Method of Energy-Saving Control for the Speed Regulation Process of Heavy Mine Electric Wheel Truck
  grantid: 51674113
  funderid: 10.13039/501100001809
– fundername: Hunan Water Metering Information Engineering Technology Research Center
  grantid: 2020TP2018
– fundername: Strategic Emerging Industry Science and Technology Tackling and Major Achievements Transformation Project of Hunan Province named Key Technology of Water Supply Network Leakage Control Based on Supercomputing and Its Engineering Application
  grantid: 2019GK4030
– fundername: National Key Research and Development Program of China named Perception and Fusion of Multidimensional Information and Cooperative Decisionmaking for Intelligent Diagnosis of Wind Turbine Critical Parts
  grantid: 2019YFE0105300
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-c7532840507a798ab5d27c23a105d27319b37f28b24f85c6d237c3e3e320b0743
IEDL.DBID RIE
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812533100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:09:41 EDT 2025
Tue Nov 18 21:18:39 EST 2025
Sat Nov 29 04:38:23 EST 2025
Wed Aug 27 02:24:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c7532840507a798ab5d27c23a105d27319b37f28b24f85c6d237c3e3e320b0743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2505-2363
0000-0001-6145-0599
0000-0002-6023-295X
0000-0002-4170-6152
0000-0002-0635-7436
0000-0002-7557-2965
PQID 2677849827
PQPubID 85462
PageCount 12
ParticipantIDs ieee_primary_9788540
crossref_citationtrail_10_1109_TIM_2022_3180407
proquest_journals_2677849827
crossref_primary_10_1109_TIM_2022_3180407
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Che (ref23) 2021
Yang (ref13) 2019; 45
Fan (ref24) 2020
ref46
ref45
ref26
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Guo (ref29) 2010; 27
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
Chu (ref25)
ref5
ref40
References_xml – ident: ref36
  doi: 10.1109/TITS.2013.2284930
– ident: ref8
  doi: 10.1109/ACCESS.2021.3081443
– ident: ref39
  doi: 10.1109/LSP.2005.845592
– year: 2020
  ident: ref24
  article-title: State and parameters estimation of distributed drive electric vehicle based on federal Kalman filter
– ident: ref3
  doi: 10.1109/TII.2018.2828125
– ident: ref33
  doi: 10.1109/TIM.2020.3024357
– year: 2021
  ident: ref23
  article-title: Motion state estimation of four-wheel drive electric vehicles
– ident: ref38
  doi: 10.3390/s19061371
– ident: ref28
  doi: 10.1007/978-3-662-46578-3_90
– ident: ref12
  doi: 10.1109/TAC.2011.2178334
– ident: ref35
  doi: 10.1109/TII.2020.3012003
– ident: ref30
  doi: 10.1016/S0005-1098(97)00093-9
– ident: ref19
  doi: 10.1109/TNS.2019.2953196
– ident: ref37
  doi: 10.1109/TCST.2014.2309911
– ident: ref46
  doi: 10.3724/SP.J.1004.2010.01007
– ident: ref1
  doi: 10.1109/JIOT.2019.2940412
– ident: ref17
  doi: 10.1175/1520-0493(1997)125<0040:ACOAKF>2.0.CO;2
– ident: ref18
  doi: 10.1117/12.277178
– ident: ref10
  doi: 10.1109/TMECH.2018.2870639
– volume: 45
  start-page: 1386
  issue: 7
  year: 2019
  ident: ref13
  article-title: Double layer unscented Kalman filter
  publication-title: Acta Autom. Sinca
– ident: ref14
  doi: 10.1109/ACCESS.2017.2771204
– ident: ref4
  doi: 10.1016/j.ejcon.2019.05.006
– ident: ref15
  doi: 10.1080/00423114.2016.1178391
– ident: ref20
  doi: 10.1109/TAC.2012.2188424
– start-page: V3-325
  volume-title: Proc. ICACTE
  ident: ref25
  article-title: Vehicle lateral and longitudinal velocity estimation based on adaptive Kalman filter
– ident: ref5
  doi: 10.1109/TVT.2018.2890418
– ident: ref21
  doi: 10.1109/TCST.2015.2488597
– ident: ref26
  doi: 10.1049/iet-cta.2013.0276
– ident: ref44
  doi: 10.1109/TIM.2019.2955797
– ident: ref22
  doi: 10.23919/ACC.2004.1383772
– ident: ref42
  doi: 10.1109/ACCESS.2020.3030260
– ident: ref27
  doi: 10.1109/TVT.2010.2045520
– ident: ref32
  doi: 10.1109/PESGM.2017.8273755
– ident: ref45
  doi: 10.1109/TIM.2020.2967138
– ident: ref11
  doi: 10.1109/TMECH.2021.3065210
– ident: ref9
  doi: 10.1109/TCST.2018.2790397
– ident: ref40
  doi: 10.1117/12.324626
– ident: ref43
  doi: 10.1109/TIM.2011.2179342
– ident: ref16
  doi: 10.1109/TIM.2021.3097401
– volume: 27
  start-page: 1131
  issue: 9
  year: 2010
  ident: ref29
  article-title: Vehicle side-slip angle estimation based on uni-tire model
  publication-title: Control Theory Appl.
– ident: ref2
  doi: 10.1109/TVT.2021.3100988
– ident: ref34
  doi: 10.1109/ACCESS.2019.2895413
– ident: ref41
  doi: 10.1109/TIM.2018.2890317
– ident: ref7
  doi: 10.1049/iet-its.2019.0458
– ident: ref31
  doi: 10.1109/IWISA.2009.5073206
– ident: ref6
  doi: 10.1109/JAS.2017.7510811
SSID ssj0007647
Score 2.5419285
Snippet Accurate vehicle state information is crucial for safe driving and dynamic control of vehicles. Vehicle state estimation under unknown noise conditions is an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Adaptive algorithms
Adaptive modulation factor
Algorithms
Attenuation
Dynamic control
enhanced adaptive unscented Kalman filter (EAUKF)
Force
Kalman filters
longitudinal dynamics modeling
Mathematical models
Roads
safe driving and dynamic control
State estimation
State variable
Tires
Vehicle dynamics
vehicle state estimation
Wheels
Title An Enhanced Adaptive Unscented Kalman Filter for Vehicle State Estimation
URI https://ieeexplore.ieee.org/document/9788540
https://www.proquest.com/docview/2677849827
Volume 71
WOSCitedRecordID wos000812533100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A0UQPPkAjiqYHLyauLN2Fbo_EQCQq8QCE26YvAgkuhIe_32l32Wg0JmYvzfaxm047802n_QpwK2Vo0AxFnpFSeCGOGI9zEaCXotEcc-kLx1swemH9fjQe87cC3OdnYYwxbvOZebBJF8vXC7W1S2WWDTZChFGEImOt9KxWrnVZK0z5MfG7HFHBLiTp8_qg94qOIKXon0Y4Ztk3E-TuVPmhiJ116R7_779O4ChDkaSdiv0UCiYpw-EXbsEy7Lu9nWpdgV47IZ1k6kL9pK3F0mo4MkwcjxO-ehbzd5GQ7swGzgmCWDIyU9sucUiUdFALpAccz2DY7Qwen7zsBgVPUd7YeAqdEbQ_PoI-wXgkZFNTpmggEFVhCqefDNiERpKGk6ipWpoGTAUGH-pLCy7OoZQsEnMBRISh5EbqJmaGmINmnhullabC1xO_UYX6rlNjldGL21su5rFzM3weoxhiK4Y4E0MV7vIay5Ra44-yFdvtebmsx6tQ28ktzubeOqaWEy_kEWWXv9e6ggPbdrqQUoPSZrU117CnPjaz9erGDatPLhjHpw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gatSDD9CIovbgxcSVpbuw2yMxEAiPeADCbdMXgQQXwsPf77S7EI3GxOyl2bbbTaftfNNpvwF4FMLXqIZCRwvBHR9HjMMY99BKUaiOmXC55S0YdoJeLxyN2FsGnnd3YbTW9vCZfjFJ68tXc7kxW2WGDTZEhLEH-yZyVnpba7fuBlU_YcjElhnigq1T0mWlfquLpiClaKGGOGqDb0rIRlX5sRRb_dI4-9-fncNpiiNJLRH8BWR0nIOTL-yCOTi0pzvlKg-tWkzq8cQ6-0lN8YVZ48ggtkxO-KrNZ-88Jo2pcZ0ThLFkqCfmu8RiUVLHdSC54ngJg0a9_9p00hgKjqSsvHYkmiOogVyEfTxgIRcVRQNJPY64ClM4AYUXjGkoqD8OK7KqqBdIT-NDXWHgxRVk43msr4Fw3xdMC1XBTB9zUNEzLZVUlLtq7JYLUNp2aiRTgnET52IWWUPDZRGKITJiiFIxFOBpV2ORkGv8UTZvun1XLu3xAhS3covS2beKqGHF81lIg5vfaz3AUbPf7USdVq99C8emnWRbpQjZ9XKj7-BAfqynq-W9HWKfwx7K8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enhanced+Adaptive+Unscented+Kalman+Filter+for+Vehicle+State+Estimation&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Yingjie&rft.au=Li%2C+Ming&rft.au=Zhang%2C+Ying&rft.au=Hu%2C+Zuolei&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2022.3180407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3180407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon