AVE: Autonomous Vehicular Edge Computing Framework with ACO-Based Scheduling

With the emergence of in-vehicle applications, providing the required computational capabilities is becoming a crucial problem. This paper proposes a framework named autonomous vehicular edge (AVE) for edge computing on the road, with the aim of increasing the computational capabilities of vehicles...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 66; číslo 12; s. 10660 - 10675
Hlavní autoři: Feng, Jingyun, Liu, Zhi, Wu, Celimuge, Ji, Yusheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the emergence of in-vehicle applications, providing the required computational capabilities is becoming a crucial problem. This paper proposes a framework named autonomous vehicular edge (AVE) for edge computing on the road, with the aim of increasing the computational capabilities of vehicles in a decentralized manner. By managing the idle computational resources on vehicles and using them efficiently, the proposed AVE framework can provide computation services in dynamic vehicular environments without requiring particular infrastructures to be deployed. Specifically, this paper introduces a workflow to support the autonomous organization of vehicular edges. Efficient job caching is proposed to better schedule jobs based on the information collected on neighboring vehicles, including GPS information. A scheduling algorithm based on ant colony optimization is designed to solve this job assignment problem. Extensive simulations are conducted, and the simulation results demonstrate the superiority of this approach over competing schemes in typical urban and highway scenarios.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2017.2714704