Fast Algorithm for Joint Unicast and Multicast Beamforming for Large-Scale Massive MIMO

We consider the problem of joint unicast and multi-group multicast beamforming design for large-scale massive multiple-input multiple-output (MIMO) systems, with a potentially large number of unicast users. Focusing on minimizing the total transmit power subject to quality-of-service constraints, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 70; s. 1 - 16
Hlavní autoři: Mohammadi, Shadi, Dong, Min, ShahbazPanahi, Shahram
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the problem of joint unicast and multi-group multicast beamforming design for large-scale massive multiple-input multiple-output (MIMO) systems, with a potentially large number of unicast users. Focusing on minimizing the total transmit power subject to quality-of-service constraints, we propose an alternating direction method of multipliers (ADMM)-based fast algorithm to efficiently obtain the beamforming solutions for both unicast and multicast users. Exploiting the optimal beamforming structure obtained recently for multi-group multicast beamforming, we decompose the original problem into two subproblems for the unicast and multicast users and solve them using the alternating optimization technique. We obtain the solution to the unicast subproblem in closed form by exploring the unicast beamforming structure, thereby substantially reducing the computational complexity of the overall algorithm. We solve the multicast subproblem by approximating the non-convex constraints with a sequence of convex constraints using the successive convex approximation. Each convex subproblem is then reformulated into an ADMM form, which enables us to derive a closed-form update for the multicast subproblem. Simulation results show that our proposed algorithm achieves a near-optimal performance at a very low complexity for large-scale systems.
AbstractList We consider the problem of joint unicast and multi-group multicast beamforming design for large-scale massive multiple-input multiple-output (MIMO) systems, with a potentially large number of unicast users. Focusing on minimizing the total transmit power subject to quality-of-service constraints, we propose an alternating direction method of multipliers (ADMM)-based fast algorithm to efficiently obtain the beamforming solutions for both unicast and multicast users. Exploiting the optimal beamforming structure obtained recently for multi-group multicast beamforming, we decompose the original problem into two subproblems for the unicast and multicast users and solve them using the alternating optimization technique. We obtain the solution to the unicast subproblem in closed form by exploring the unicast beamforming structure, thereby substantially reducing the computational complexity of the overall algorithm. We solve the multicast subproblem by approximating the non-convex constraints with a sequence of convex constraints using the successive convex approximation. Each convex subproblem is then reformulated into an ADMM form, which enables us to derive a closed-form update for the multicast subproblem. Simulation results show that our proposed algorithm achieves a near-optimal performance at a very low complexity for large-scale systems.
Author ShahbazPanahi, Shahram
Mohammadi, Shadi
Dong, Min
Author_xml – sequence: 1
  givenname: Shadi
  surname: Mohammadi
  fullname: Mohammadi, Shadi
  organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada
– sequence: 2
  givenname: Min
  orcidid: 0000-0002-7223-8865
  surname: Dong
  fullname: Dong, Min
  organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada
– sequence: 3
  givenname: Shahram
  orcidid: 0000-0001-8914-5481
  surname: ShahbazPanahi
  fullname: ShahbazPanahi, Shahram
  organization: Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, Canada
BookMark eNp9kEtPAjEUhRuDiYDuTdxM4nqwr3l0iUQUA8EEiO6a0ulgydBiW0z89xaHuHDh6r6-c09yeqBjrFEAXCM4QAiyu-XiZYAhxgOCUYlKega6iFGUQlrkndjDjKRZWbxdgJ73WwgRpSzvgtex8CEZNhvrdHjfJbV1ybPVJiQro-XxJkyVzA5NaKd7JXaR2Wmz-WGnwm1UupCiUclMeK8_Y53M5pfgvBaNV1en2ger8cNy9JRO54-T0XCaSsxQSGVOIK6opHhdVETRtSiLklS1wLKGlFVyTQUrGc5EVgomK1oISlBdqCxus5qRPrht_-6d_TgoH_jWHpyJlhwXFBeQZgxGCraUdNZ7p2q-d3on3BdHkB_j4zE-foyPn-KLkvyPROoggrYmOKGb_4Q3rVArpX59GCMEUkS-AR53fhI
CODEN ITPRED
CitedBy_id crossref_primary_10_1186_s13638_023_02298_5
crossref_primary_10_1109_TWC_2023_3325735
crossref_primary_10_1109_TSP_2025_3581486
crossref_primary_10_3390_s24082536
crossref_primary_10_1109_TSP_2024_3351478
Cites_doi 10.1287/opre.26.4.681
10.1137/120887795
10.1109/TSP.2022.3160004
10.1109/TWC.2017.2672751
10.1109/TWC.2020.3020081
10.1109/SPAWC.2015.7227042
10.1109/TBC.2019.2932339
10.1109/TSP.2006.872578
10.1109/SPAWC51858.2021.9593125
10.1109/MSP.2014.2312183
10.1109/TWC.2012.101112.112295
10.1109/TSP.2016.2593681
10.1109/ICASSP39728.2021.9414396
10.1109/INFOCOM.2015.7218553
10.1109/TSP.2014.2345340
10.1109/JSAC.2014.2328144
10.1109/SPAWC.2018.8446030
10.1109/TCOMM.2019.2943168
10.1109/SPAWC.2017.8227799
10.1109/TWC.2016.2515598
10.1109/ICASSP.2018.8462123
10.1109/SPAWC.2017.8227668
10.1109/TSP.2020.2994753
10.1109/LWC.2022.3165194
10.1109/TSP.2007.909010
10.1109/PIMRC.2006.254312
10.1109/CAMSAP.2013.6714115
10.1155/2015/104531
10.1109/TCOMM.2017.2679708
10.1109/TWC.2018.2854554
10.1017/CBO9780511804441
10.1109/TSP.2018.2864636
10.1109/MNET.2017.1600067NM
10.1109/TWC.2017.2744629
10.1109/TWC.2018.2858223
10.1109/MSP.2010.936019
10.1109/TWC.2019.2927670
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2022.3218184
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 16
ExternalDocumentID 10_1109_TSP_2022_3218184
9933041
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-c6302d4c42b7d3e4ba8783dfa2cf049dcb4a98925a58a9cd47a431f7e59895f93
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000892920600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:22:37 EDT 2025
Sat Nov 29 04:10:56 EST 2025
Tue Nov 18 22:11:34 EST 2025
Wed Aug 27 02:29:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c6302d4c42b7d3e4ba8783dfa2cf049dcb4a98925a58a9cd47a431f7e59895f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8914-5481
0000-0002-7223-8865
PQID 2742704590
PQPubID 85478
PageCount 16
ParticipantIDs crossref_primary_10_1109_TSP_2022_3218184
crossref_citationtrail_10_1109_TSP_2022_3218184
ieee_primary_9933041
proquest_journals_2742704590
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
boyd (ref39) 2011
ref2
ref1
ref16
ref19
ref18
boyd (ref38) 2007
li (ref41) 0
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
ref28
ref27
ref29
zhang (ref17) 2022
ref8
ref7
ref9
ref4
bengtsson (ref3) 2002
ref6
ref5
ref40
References_xml – ident: ref36
  doi: 10.1287/opre.26.4.681
– ident: ref40
  doi: 10.1137/120887795
– ident: ref16
  doi: 10.1109/TSP.2022.3160004
– ident: ref13
  doi: 10.1109/TWC.2017.2672751
– ident: ref35
  doi: 10.1109/TWC.2020.3020081
– ident: ref12
  doi: 10.1109/SPAWC.2015.7227042
– ident: ref32
  doi: 10.1109/TBC.2019.2932339
– year: 2002
  ident: ref3
  article-title: Handbook of antennas in wireless communications
  publication-title: Optimum and Suboptimum Transmit Beamforming
– ident: ref5
  doi: 10.1109/TSP.2006.872578
– ident: ref1
  doi: 10.1109/SPAWC51858.2021.9593125
– ident: ref4
  doi: 10.1109/MSP.2014.2312183
– ident: ref7
  doi: 10.1109/TWC.2012.101112.112295
– ident: ref42
  doi: 10.1109/TSP.2016.2593681
– ident: ref23
  doi: 10.1109/ICASSP39728.2021.9414396
– ident: ref25
  doi: 10.1109/INFOCOM.2015.7218553
– ident: ref9
  doi: 10.1109/TSP.2014.2345340
– ident: ref21
  doi: 10.1109/JSAC.2014.2328144
– ident: ref20
  doi: 10.1109/SPAWC.2018.8446030
– ident: ref33
  doi: 10.1109/TCOMM.2019.2943168
– ident: ref29
  doi: 10.1109/SPAWC.2017.8227799
– ident: ref26
  doi: 10.1109/TWC.2016.2515598
– year: 2007
  ident: ref38
  article-title: Subgradient methods
  publication-title: Lecture Notes for EE364b
– year: 2011
  ident: ref39
  publication-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
– ident: ref19
  doi: 10.1109/ICASSP.2018.8462123
– start-page: 3935
  year: 0
  ident: ref41
  article-title: Alternating minimizations converge to second-order optimal solutions
  publication-title: Proc Int Conf Mach Learn
– ident: ref28
  doi: 10.1109/SPAWC.2017.8227668
– ident: ref22
  doi: 10.1109/TSP.2020.2994753
– ident: ref18
  doi: 10.1109/LWC.2022.3165194
– ident: ref6
  doi: 10.1109/TSP.2007.909010
– ident: ref24
  doi: 10.1109/PIMRC.2006.254312
– ident: ref8
  doi: 10.1109/CAMSAP.2013.6714115
– ident: ref37
  doi: 10.1155/2015/104531
– ident: ref15
  doi: 10.1109/TCOMM.2017.2679708
– ident: ref27
  doi: 10.1109/TWC.2018.2854554
– ident: ref14
  doi: 10.1017/CBO9780511804441
– ident: ref10
  doi: 10.1109/TSP.2018.2864636
– year: 2022
  ident: ref17
  article-title: Ultra-low-complexity algorithms with structurally optimal multi-group multicast beamforming in large-scale systems
– ident: ref2
  doi: 10.1109/MNET.2017.1600067NM
– ident: ref34
  doi: 10.1109/TWC.2017.2744629
– ident: ref30
  doi: 10.1109/TWC.2018.2858223
– ident: ref11
  doi: 10.1109/MSP.2010.936019
– ident: ref31
  doi: 10.1109/TWC.2019.2927670
SSID ssj0014496
Score 2.472577
Snippet We consider the problem of joint unicast and multi-group multicast beamforming design for large-scale massive multiple-input multiple-output (MIMO) systems,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
alternating direction method of multipliers
Approximation
Array signal processing
Beamforming
Closed form solutions
Complexity
Computational complexity
Downlink
Exact solutions
large-scale optimization
Multicast algorithms
Multicast beamforming
Multicasting
optimal beamforming structure
Optimization
Optimization techniques
Signal processing algorithms
Unicast
unicast beamforming
Title Fast Algorithm for Joint Unicast and Multicast Beamforming for Large-Scale Massive MIMO
URI https://ieeexplore.ieee.org/document/9933041
https://www.proquest.com/docview/2742704590
Volume 70
WOSCitedRecordID wos000892920600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5g4gAH3ojxUg5ckOhWknRJjoCYADGYNCZ2q7LEhUmjQ6zj9-Nk3QQCIXHrw64iu4k_x7FNyHHiuJNcQiQZmEjYBOccGB5JyMDFaKItqNBsQt7fq15PtxfI6TwXBgDC4TOo-csQy3cjO_FbZXUdvG_0dRallNNcrXnEQIjQiwvhAo8SJXuzkGSs64-dNjqCjNW4t2dKfDNBoafKj4U4WJfm2v_GtU5WSxRJz6dq3yALkG-SlS-1BbfIU9OMC3o-fB6h-__yShGc0tvRIC9o1-eD4DuTOxryb8PdBZhXD2CROdDe-SPiUQdVCLSFCBtXRdq6aT1sk27z6vHyOiq7KESW6bMisg0eMyesYH3pOIi-UVJxlxlmM3QPnO0Lo5VmiUmU0dYJaRBUZBISfJpkmu-QSj7KYZfQhMkGQF8J8ClQwpnYiTjLGoaxM2djUSX1mWBTW5YY950uhmlwNWKdoipSr4q0VEWVnMw53qblNf6g3fKin9OVUq-Sg5nu0nL-jVMfgJaIVnW89zvXPln2355uphyQSvE-gUOyZD-Kwfj9KPxan7uEyzg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTyMxDLYQi7RwWN6iy2Nz4IK0Q6d5NMkREBWwbUGiaHsbpYkHKsF01Q78fpJ0WoFYIXGbh62J7En8OY5tgEPhmJNMYiIpmoRb4eccGpZIzNGl3kRbVLHZhOx2Vb-vbxbg9zwXBhHj4TM8Dpcxlu9G9jlsldV19L69r_NNcE4b02ytecyA89iNywMGlggl-7OgZKrrvdsb7wpSesyCRVP8nRGKXVU-LMXRvrRWvzayNfhR4UhyMlX8OixgsQErb6oLbsLflpmU5OTxfjQelg9PxMNTcjUaFiW5Cxkh_p0pHIkZuPHuFM1TgLCeOdK2wyHx5NYrEUnHY2y_LpLOZed6C-5a572zi6Tqo5BYqhtlYpsspY5bTgfSMeQDo6RiLjfU5t5BcHbAjVaaCiOU0dZxaTysyCUK_1Tkmm3DYjEqcAeIoLKJOFAcQxIUdyZ1PM3zpqG04WzKa1CfCTazVZHx0OviMYvORqozr4osqCKrVFGDoznHv2mBjU9oN4Po53SV1GuwN9NdVs3ASRZC0NLjVZ3-_D_XL_h-0eu0s_Zl988uLIfvTLdW9mCxHD_jPizZl3I4GR_E3-wVeSDOfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Algorithm+for+Joint+Unicast+and+Multicast+Beamforming+for+Large-Scale+Massive+MIMO&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Mohammadi%2C+Shadi&rft.au=Dong%2C+Min&rft.au=ShahbazPanahi%2C+Shahram&rft.date=2022&rft.pub=IEEE&rft.issn=1053-587X&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTSP.2022.3218184&rft.externalDocID=9933041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon