A Deep Learning-Based Framework for Low Complexity Multiuser MIMO Precoding Design

Using precoding to suppress multi-user interference is a well-known technique to improve spectra efficiency in multiuser multiple-input multiple-output (MU-MIMO) systems, and the pursuit of high performance and low complexity precoding method has been the focus in the last decade. The traditional al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on wireless communications Ročník 21; číslo 12; s. 11193 - 11206
Hlavní autoři: Zhang, Maojun, Gao, Jiabao, Zhong, Caijun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1536-1276, 1558-2248
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Using precoding to suppress multi-user interference is a well-known technique to improve spectra efficiency in multiuser multiple-input multiple-output (MU-MIMO) systems, and the pursuit of high performance and low complexity precoding method has been the focus in the last decade. The traditional algorithms including the zero-forcing (ZF) algorithm and the weighted minimum mean square error (WMMSE) algorithm failed to achieve a satisfactory trade-off between complexity and performance. In this paper, leveraging on the power of deep learning, we propose a low-complexity precoding design framework for MU-MIMO systems. The key idea is to transform the MIMO precoding problem into the multiple-input single-output precoding problem, where the optimal precoding structure can be obtained in closed-form. A customized deep neural network is designed to fit the mapping from the channels to the precoding matrix. In addition, the technique of input dimensionality reduction, network pruning, and recovery module compression are used to further improve the computational efficiency. Furthermore, the extension to the practical MIMO orthogonal frequency-division multiplexing (MIMO-OFDM) system is studied. Simulation results show that the proposed low-complexity precoding scheme achieves similar performance as the WMMSE algorithm with very low computational complexity.
AbstractList Using precoding to suppress multi-user interference is a well-known technique to improve spectra efficiency in multiuser multiple-input multiple-output (MU-MIMO) systems, and the pursuit of high performance and low complexity precoding method has been the focus in the last decade. The traditional algorithms including the zero-forcing (ZF) algorithm and the weighted minimum mean square error (WMMSE) algorithm failed to achieve a satisfactory trade-off between complexity and performance. In this paper, leveraging on the power of deep learning, we propose a low-complexity precoding design framework for MU-MIMO systems. The key idea is to transform the MIMO precoding problem into the multiple-input single-output precoding problem, where the optimal precoding structure can be obtained in closed-form. A customized deep neural network is designed to fit the mapping from the channels to the precoding matrix. In addition, the technique of input dimensionality reduction, network pruning, and recovery module compression are used to further improve the computational efficiency. Furthermore, the extension to the practical MIMO orthogonal frequency-division multiplexing (MIMO-OFDM) system is studied. Simulation results show that the proposed low-complexity precoding scheme achieves similar performance as the WMMSE algorithm with very low computational complexity.
Author Zhang, Maojun
Zhong, Caijun
Gao, Jiabao
Author_xml – sequence: 1
  givenname: Maojun
  surname: Zhang
  fullname: Zhang, Maojun
  email: zhmj@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Jiabao
  surname: Gao
  fullname: Gao, Jiabao
  email: gao_jiabao@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Caijun
  orcidid: 0000-0002-9960-7800
  surname: Zhong
  fullname: Zhong, Caijun
  email: caijunzhong@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kEtPAjEURhujiYDuTdw0cT3Yx7Qzs0QUJYFgDMblpFNuSRGmYzsE-feWQFy4cHXv4jv3cbrovHY1IHRDSZ9SUtzPP4Z9Rhjrc1qQlIsz1KFC5AljaX5-6LlMKMvkJeqGsCKEZlKIDnob4EeABk9A-drWy-RBBVjgkVcb2Dn_iY3zeOJ2eOg2zRq-bbvH0-26tdsAHk_H0xl-9aDdIrJxUrDL-gpdGLUOcH2qPfQ-epoPX5LJ7Hk8HEwSzQraJloYIVUuuMmZzKSU2miqDcmYyZUwXBU5zwmwKq3i2RWtSLrgCwaQscpkOuU9dHec23j3tYXQliu39XVcWbIszYXkBcliSh5T2rsQPJhS21a11tWtV3ZdUlIe_JXRX3nwV578RZD8ARtvN8rv_0Nuj4gFgN94_CON-vkP00t78Q
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3297979
crossref_primary_10_1109_TCCN_2023_3235763
crossref_primary_10_1109_JSAC_2024_3431583
crossref_primary_10_1109_TWC_2024_3435023
crossref_primary_10_3390_app131910855
crossref_primary_10_1109_TVT_2024_3452409
crossref_primary_10_3390_app142411994
crossref_primary_10_1109_TWC_2023_3305124
crossref_primary_10_3390_electronics14112277
crossref_primary_10_1109_TWC_2025_3527634
crossref_primary_10_1109_JSAC_2025_3531537
crossref_primary_10_1109_TWC_2025_3562818
crossref_primary_10_1109_TCCN_2024_3488815
crossref_primary_10_1109_TWC_2024_3509713
crossref_primary_10_1109_TCCN_2024_3382973
crossref_primary_10_1109_TNSE_2025_3563370
crossref_primary_10_1109_TVT_2023_3293848
crossref_primary_10_1109_TWC_2025_3548682
crossref_primary_10_1007_s11235_024_01135_4
Cites_doi 10.1109/TWC.2020.3033334
10.1109/LWC.2020.3007198
10.1109/LCOMM.2020.3041510
10.1109/TVT.2020.2980905
10.1109/TIT.2003.813523
10.1109/LCOMM.2020.2965532
10.1109/JPROC.2019.2957798
10.1109/JSAC.2020.3041383
10.1109/MSP.2014.2312183
10.1109/TSP.2020.2976585
10.1109/TSP.2006.890905
10.1109/COMST.2019.2926625
10.1109/ISCC50000.2020.9219669
10.1109/JSAC.2017.2699338
10.1109/MWC.2019.1800447
10.1109/JSTSP.2019.2925975
10.24963/ijcai.2018/309
10.1109/TSP.2019.2905833
10.1109/TSP.2018.2866382
10.1109/TWC.2021.3107452
10.1109/TCOMM.2019.2924010
10.1109/TSP.2019.2908906
10.1109/TCOMM.2019.2960361
10.1109/LWC.2018.2832128
10.1109/JSAC.2019.2933962
10.1109/GLOBECOM42002.2020.9322310
10.1109/LWC.2017.2757490
10.1109/JSAC.2005.862421
10.1109/TVT.2019.2897134
10.1109/TCOMM.2018.2823715
10.1109/T-WC.2008.070851
10.1109/TSP.2010.2053709
10.1109/TSP.2019.2899805
10.1109/TCOMM.2004.840638
10.1109/TSP.2011.2147784
10.1109/TSP.2003.821107
10.1109/ACCESS.2018.2887308
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2022.3190435
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 11206
ExternalDocumentID 10_1109_TWC_2022_3190435
9834153
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB1801104
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61922071
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-c5f56a853f8267666cfc1cf072f8a5f3a98380e2b4b276b1b04d3d2ee72bf7c43
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000913795700075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 12:33:55 EDT 2025
Sat Nov 29 06:23:55 EST 2025
Tue Nov 18 22:11:35 EST 2025
Wed Aug 27 02:14:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c5f56a853f8267666cfc1cf072f8a5f3a98380e2b4b276b1b04d3d2ee72bf7c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9960-7800
PQID 2748563907
PQPubID 105736
PageCount 14
ParticipantIDs ieee_primary_9834153
proquest_journals_2748563907
crossref_primary_10_1109_TWC_2022_3190435
crossref_citationtrail_10_1109_TWC_2022_3190435
PublicationCentury 2000
PublicationDate 2022-Dec.
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
pellaco (ref27) 2020
ref24
ref23
(ref39) 2021
ref26
ref25
ref20
ref22
ref21
li (ref37) 2016
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref3
  doi: 10.1109/TWC.2020.3033334
– ident: ref30
  doi: 10.1109/LWC.2020.3007198
– ident: ref26
  doi: 10.1109/LCOMM.2020.3041510
– ident: ref22
  doi: 10.1109/TVT.2020.2980905
– ident: ref5
  doi: 10.1109/TIT.2003.813523
– ident: ref25
  doi: 10.1109/LCOMM.2020.2965532
– ident: ref15
  doi: 10.1109/JPROC.2019.2957798
– ident: ref23
  doi: 10.1109/JSAC.2020.3041383
– ident: ref34
  doi: 10.1109/MSP.2014.2312183
– ident: ref19
  doi: 10.1109/TSP.2020.2976585
– ident: ref33
  doi: 10.1109/TSP.2006.890905
– ident: ref35
  doi: 10.1109/COMST.2019.2926625
– ident: ref10
  doi: 10.1109/ISCC50000.2020.9219669
– ident: ref40
  doi: 10.1109/JSAC.2017.2699338
– ident: ref31
  doi: 10.1109/MWC.2019.1800447
– ident: ref21
  doi: 10.1109/JSTSP.2019.2925975
– ident: ref38
  doi: 10.24963/ijcai.2018/309
– ident: ref36
  doi: 10.1109/TSP.2019.2905833
– ident: ref12
  doi: 10.1109/TSP.2018.2866382
– ident: ref24
  doi: 10.1109/TWC.2021.3107452
– ident: ref32
  doi: 10.1109/TCOMM.2019.2924010
– ident: ref16
  doi: 10.1109/TSP.2019.2908906
– ident: ref29
  doi: 10.1109/TCOMM.2019.2960361
– ident: ref20
  doi: 10.1109/LWC.2018.2832128
– year: 2021
  ident: ref39
  publication-title: NR and NG-RAN Overall Description
– ident: ref14
  doi: 10.1109/JSAC.2019.2933962
– ident: ref4
  doi: 10.1109/GLOBECOM42002.2020.9322310
– ident: ref17
  doi: 10.1109/LWC.2017.2757490
– ident: ref7
  doi: 10.1109/JSAC.2005.862421
– ident: ref13
  doi: 10.1109/TVT.2019.2897134
– ident: ref11
  doi: 10.1109/TCOMM.2018.2823715
– ident: ref1
  doi: 10.1109/T-WC.2008.070851
– ident: ref8
  doi: 10.1109/TSP.2010.2053709
– ident: ref18
  doi: 10.1109/TSP.2019.2899805
– ident: ref9
  doi: 10.1109/TCOMM.2004.840638
– ident: ref2
  doi: 10.1109/TSP.2011.2147784
– year: 2020
  ident: ref27
  article-title: Deep unfolding of the weighted MMSE beamforming algorithm
  publication-title: arXiv 2006 08448
– ident: ref6
  doi: 10.1109/TSP.2003.821107
– ident: ref28
  doi: 10.1109/ACCESS.2018.2887308
– year: 2016
  ident: ref37
  article-title: Pruning filters for efficient ConvNets
  publication-title: arXiv 1608 08710
SSID ssj0017655
Score 2.5784314
Snippet Using precoding to suppress multi-user interference is a well-known technique to improve spectra efficiency in multiuser multiple-input multiple-output...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11193
SubjectTerms Algorithms
Artificial neural networks
Complexity
Computational complexity
Deep learning
Downlink
Machine learning
MIMO communication
MIMO-OFDM
MISO communication
model compression
Multi-user MIMO
Orthogonal Frequency Division Multiplexing
precoder design
Precoding
Resource management
Wireless communication
Title A Deep Learning-Based Framework for Low Complexity Multiuser MIMO Precoding Design
URI https://ieeexplore.ieee.org/document/9834153
https://www.proquest.com/docview/2748563907
Volume 21
WOSCitedRecordID wos000913795700075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAH3-L6IgcvgnWzSbppj74WBVdFFL2VJp2IILvLPhT_vZNstwqK4K3QJISZdma-zGQ-gH2RK5mTJ444Shup1PLIJEJFwhhH0YXDOC4C2YS-vk6entLbGhxWd2EQMRSf4ZF_DLn8omfH_qiskSZkc2M5AzNa68ldrSpjoFuB4ZRee14ZXaUkedq4fzwlICgE4dOUq0Ds9uWCAqfKD0McvEt76X_7WobFMopkxxO1r0ANu6uw8K234BrcHbMzxD4rG6g-RyfkrwrWnhZjMYpW2VXvnXmL4Ltijj5YuI3rjy1Y57Jzw249Wva-jVbydR7r8NA-vz-9iEoChciKtDmKbOziVk4O2RGI0ARUrLNN67gWLsljJ3PaeMJRGGVIYqZpuCpkIRC1ME5bJTdgttvr4iYw7XzgKAsu0CgKktKmkbww0nK0iVNYh8ZUppktu4t7kovXLKAMnmakhcxrISu1UIeDakZ_0lnjj7FrXurVuFLgddiZqi0rf71hRjA7iSnu4nrr91nbMO_XntSk7MDsaDDGXZizb6OX4WAvfFWfK9vInQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BhwQ8MH6Kbmz4gRekZXVsp04ega0CrS0IdYK3KHbOCAm1VVtA_Pec3TSbBJq0tzycE-vOubvPPt8HcCQKJQuKxBFHaSOVWR6ZVKhIGOMou3CYJGUgm9D9fnp7m10twbf6LgwihuIz_O4fw1l-ObKPfquslaXkcxO5DB8SpUQ8v61VnxnoduA4JQHPLKPrQ0metQY3ZwQFhSCEmnEVqN3-BKHAqvLGFYf40vn4fzPbhI0qj2Qnc8NvwRIOt2H9r-6CO3B9wn4gjlnVQvUuOqWIVbLOohyLUb7KuqNn5n2C74s5e2HhPq7fuGC9i94lu_J42Uc3epOv9NiF352fg7PzqKJQiKzI4llkE5e0CwrJjmCEJqhinY2t41q4tEicLGjiKUdhlCGNmdhwVcpSIGphnLZK7kFjOBriPjDtfOooSy7QKEqTsthIXhppOdrUKWxCa6HT3Fb9xT3NxUMecAbPcrJC7q2QV1ZownE9YjzvrfEP2R2v9VquUngTDhZmy6ufb5oT0E4Tyry4_vT-qENYPR_0unn3ov_rM6z578wrVA6gMZs84hdYsU-z--nka1hhr8dRy-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning-Based+Framework+for+Low+Complexity+Multiuser+MIMO+Precoding+Design&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhang%2C+Maojun&rft.au=Gao%2C+Jiabao&rft.au=Zhong%2C+Caijun&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=21&rft.issue=12&rft.spage=11193&rft_id=info:doi/10.1109%2FTWC.2022.3190435&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon