DualGNN: Dual Graph Neural Network for Multimedia Recommendation
One of the important factors affecting micro-video recommender systems is to model the multi-modal user preference on the micro-video. Despite the remarkable performance of prior arts, they are still limited by fusing the user preference derived from different modalities in a unified manner, ignorin...
Uložené v:
| Vydané v: | IEEE transactions on multimedia Ročník 25; s. 1074 - 1084 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1520-9210, 1941-0077 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | One of the important factors affecting micro-video recommender systems is to model the multi-modal user preference on the micro-video. Despite the remarkable performance of prior arts, they are still limited by fusing the user preference derived from different modalities in a unified manner, ignoring the users tend to place different emphasis on different modalities. Furthermore, modality-missing is ubiquity and unavoidable in the micro-video recommendation, some modalities information of micro-videos are lacked in many cases, which negatively affects the multi-modal fusion operations. To overcome these disadvantages, we propose a novel framework for the micro-video recommendation, dubbed Dual Graph Neural Network (DualGNN), upon the user-microvideo bipartite and user co-occurrence graphs, which leverages the correlation between users to collaboratively mine the particular fusion pattern for each user. Specifically, we first introduce a single-modal representation learning module, which performs graph operations on the user-microvideo graph in each modality to capture single-modal user preferences on different modalities. And then, we devise a multi-modal representation learning module to explicitly model the user's attentions over different modalities and inductively learn the multi-modal user preference. Finally, we propose a prediction module to rank the potential micro-videos for users. Extensive experiments on two public datasets demonstrate the significant superiority of our DualGNN over state-of-the-arts methods. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1520-9210 1941-0077 |
| DOI: | 10.1109/TMM.2021.3138298 |