Deep Learning-Based Feature Representation and Its Application for Soft Sensor Modeling With Variable-Wise Weighted SAE

In modern industrial processes, soft sensors have played an important role for effective process control, optimization, and monitoring. Feature representation is one of the core factors to construct accurate soft sensors. Recently, deep learning techniques have been developed for high-level abstract...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 14; číslo 7; s. 3235 - 3243
Hlavní autori: Yuan, Xiaofeng, Huang, Biao, Wang, Yalin, Yang, Chunhua, Gui, Weihua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In modern industrial processes, soft sensors have played an important role for effective process control, optimization, and monitoring. Feature representation is one of the core factors to construct accurate soft sensors. Recently, deep learning techniques have been developed for high-level abstract feature extraction in pattern recognition areas, which also have great potential for soft sensing applications. Hence, deep stacked autoencoder (SAE) is introduced for soft sensor in this paper. As for output prediction purpose, traditional deep learning algorithms cannot extract high-level output-related features. Thus, a novel variable-wise weighted stacked autoencoder (VW-SAE) is proposed for hierarchical output-related feature representation layer by layer. By correlation analysis with the output variable, important variables are identified from other ones in the input layer of each autoencoder. The variables are assigned with different weights accordingly. Then, variable-wise weighted autoencoders are designed and stacked to form deep networks. An industrial application shows that the proposed VW-SAE can give better prediction performance than the traditional multilayer neural networks and SAE.
AbstractList In modern industrial processes, soft sensors have played an important role for effective process control, optimization, and monitoring. Feature representation is one of the core factors to construct accurate soft sensors. Recently, deep learning techniques have been developed for high-level abstract feature extraction in pattern recognition areas, which also have great potential for soft sensing applications. Hence, deep stacked autoencoder (SAE) is introduced for soft sensor in this paper. As for output prediction purpose, traditional deep learning algorithms cannot extract high-level output-related features. Thus, a novel variable-wise weighted stacked autoencoder (VW-SAE) is proposed for hierarchical output-related feature representation layer by layer. By correlation analysis with the output variable, important variables are identified from other ones in the input layer of each autoencoder. The variables are assigned with different weights accordingly. Then, variable-wise weighted autoencoders are designed and stacked to form deep networks. An industrial application shows that the proposed VW-SAE can give better prediction performance than the traditional multilayer neural networks and SAE.
Author Gui, Weihua
Yuan, Xiaofeng
Wang, Yalin
Yang, Chunhua
Huang, Biao
Author_xml – sequence: 1
  givenname: Xiaofeng
  orcidid: 0000-0002-9072-7179
  surname: Yuan
  fullname: Yuan, Xiaofeng
  email: yuanxf@csu.edu.cn
  organization: College of Information Science and Engineering, Central South University, Changsha, China
– sequence: 2
  givenname: Biao
  orcidid: 0000-0001-9082-2216
  surname: Huang
  fullname: Huang, Biao
  email: biao.huang@ualberta.ca
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
– sequence: 3
  givenname: Yalin
  orcidid: 0000-0002-1876-7707
  surname: Wang
  fullname: Wang, Yalin
  email: ylwang@csu.edu.cn
  organization: College of Information Science and Engineering, Central South University, Changsha, China
– sequence: 4
  givenname: Chunhua
  orcidid: 0000-0003-2550-1509
  surname: Yang
  fullname: Yang, Chunhua
  email: ychh@csu.edu.cn
  organization: College of Information Science and Engineering, Central South University, Changsha, China
– sequence: 5
  givenname: Weihua
  orcidid: 0000-0003-0312-436X
  surname: Gui
  fullname: Gui, Weihua
  email: gwh@csu.edu.cn
  organization: College of Information Science and Engineering, Central South University, Changsha, China
BookMark eNp9UU1LAzEUDKLg513wEvC89SVxv461fhUqgq32uGQ3L23Kml2TFPHfm7LiwYOnNzxm5jHzjsm-7SwScs5gxBiUV4vpdMSBFSNeQJkL2CNHrLxmCUAK-xGnKUsEB3FIjr3fAIgcRHlEPm8RezpD6ayxq-RGelT0HmXYOqQv2Dv0aIMMprNUWkWnwdNx37emGXa6c3Te6UDnaH3ET53CNjrRpQlr-iadkXWLydJ4pEs0q3WI_vPx3Sk50LL1ePYzT8jr_d1i8pjMnh-mk_EsaXjJQtIwXbOCYwl5lrGGa54zhKIuUuRCNLWSecpQ17rQtVClUAp0ncZojeKZElKckMvBt3fdxxZ9qDbd1tl4suKQXQsGLBWRlQ2sxnXeO9RVY4bQwUnTVgyqXclVLLnalVz9lByF8EfYO_Mu3dd_kotBYhDxl14I4PFd4htzLInk
CODEN ITIICH
CitedBy_id crossref_primary_10_1002_cjce_25483
crossref_primary_10_1109_TCYB_2019_2923756
crossref_primary_10_1016_j_jprocont_2019_11_012
crossref_primary_10_1109_JSEN_2024_3398032
crossref_primary_10_1016_j_trac_2020_115901
crossref_primary_10_1002_cjce_70051
crossref_primary_10_1016_j_chemolab_2019_01_008
crossref_primary_10_1007_s13198_022_01744_9
crossref_primary_10_3390_s20216350
crossref_primary_10_1109_LRA_2021_3091012
crossref_primary_10_1007_s10845_023_02254_6
crossref_primary_10_1109_TII_2021_3065377
crossref_primary_10_1016_j_ifacol_2020_12_703
crossref_primary_10_1016_j_rineng_2025_107127
crossref_primary_10_1007_s11042_021_11043_3
crossref_primary_10_1016_j_jprocont_2019_11_007
crossref_primary_10_1109_TIE_2020_2984443
crossref_primary_10_1109_JSEN_2021_3102586
crossref_primary_10_1016_j_compchemeng_2020_106964
crossref_primary_10_1016_j_aej_2025_05_078
crossref_primary_10_1016_j_jprocont_2023_04_002
crossref_primary_10_1109_TASE_2024_3506835
crossref_primary_10_1109_TIM_2024_3400358
crossref_primary_10_1016_j_conengprac_2020_104458
crossref_primary_10_1109_TIE_2020_3014574
crossref_primary_10_1002_cite_202100134
crossref_primary_10_1109_JSEN_2022_3219253
crossref_primary_10_1109_TII_2021_3053128
crossref_primary_10_1016_j_ifacol_2021_08_217
crossref_primary_10_1109_JSEN_2025_3563586
crossref_primary_10_1109_JSTARS_2024_3491294
crossref_primary_10_1109_ACCESS_2021_3053045
crossref_primary_10_1016_j_neucom_2018_11_107
crossref_primary_10_1109_ACCESS_2020_2965623
crossref_primary_10_1016_j_ins_2021_12_106
crossref_primary_10_1109_JSEN_2021_3056210
crossref_primary_10_1016_j_jwpe_2023_104654
crossref_primary_10_1109_TIM_2020_2992873
crossref_primary_10_1002_apj_70048
crossref_primary_10_1016_j_ifacol_2018_09_443
crossref_primary_10_1109_TII_2021_3078414
crossref_primary_10_1016_j_renene_2025_123680
crossref_primary_10_1109_ACCESS_2024_3409899
crossref_primary_10_1016_j_vibspec_2022_103450
crossref_primary_10_1109_JSTARS_2023_3342986
crossref_primary_10_1109_TCYB_2024_3365068
crossref_primary_10_1080_14498596_2024_2305119
crossref_primary_10_3390_math11081777
crossref_primary_10_1109_JSEN_2018_2882201
crossref_primary_10_3390_pr12030495
crossref_primary_10_1016_j_eswa_2022_119208
crossref_primary_10_1016_j_isatra_2021_01_002
crossref_primary_10_1109_ACCESS_2019_2907328
crossref_primary_10_1016_j_asoc_2022_108898
crossref_primary_10_1002_cjce_25145
crossref_primary_10_1016_j_ins_2020_03_018
crossref_primary_10_1016_j_jprocont_2020_07_009
crossref_primary_10_1109_TCYB_2020_3010331
crossref_primary_10_1109_JSEN_2024_3375072
crossref_primary_10_1109_TII_2022_3202909
crossref_primary_10_1016_j_cjche_2025_02_011
crossref_primary_10_1109_TII_2024_3424510
crossref_primary_10_1155_2022_2806183
crossref_primary_10_1016_j_conengprac_2021_104784
crossref_primary_10_1109_TIM_2022_3222506
crossref_primary_10_1109_TITS_2021_3072743
crossref_primary_10_1109_ACCESS_2023_3334012
crossref_primary_10_1002_cjce_25676
crossref_primary_10_1007_s11869_020_00795_w
crossref_primary_10_1109_JAS_2024_124227
crossref_primary_10_1177_09596518221082857
crossref_primary_10_1007_s12596_023_01187_w
crossref_primary_10_1109_TII_2019_2941750
crossref_primary_10_1109_TC_2021_3129342
crossref_primary_10_3390_s23229175
crossref_primary_10_1109_TII_2019_2893125
crossref_primary_10_3390_diagnostics10010027
crossref_primary_10_1016_j_mineng_2023_108179
crossref_primary_10_1109_TIM_2020_2977793
crossref_primary_10_1109_TCYB_2022_3152107
crossref_primary_10_1002_cjce_25447
crossref_primary_10_1016_j_ress_2021_108082
crossref_primary_10_1109_TII_2021_3090753
crossref_primary_10_1007_s00521_023_09198_1
crossref_primary_10_1016_j_compchemeng_2024_108707
crossref_primary_10_1109_TIM_2022_3219482
crossref_primary_10_1016_j_conengprac_2019_07_016
crossref_primary_10_1016_j_chemolab_2023_104878
crossref_primary_10_1109_TIM_2021_3122187
crossref_primary_10_1016_j_asoc_2024_111551
crossref_primary_10_1016_j_jprocont_2022_11_001
crossref_primary_10_1016_j_conengprac_2018_05_002
crossref_primary_10_1109_TII_2022_3182343
crossref_primary_10_1016_j_conengprac_2019_104187
crossref_primary_10_3390_electronics9111837
crossref_primary_10_1016_j_jprocont_2021_10_011
crossref_primary_10_1088_1361_6501_ad6684
crossref_primary_10_1109_TGRS_2020_3005431
crossref_primary_10_1002_cjce_70101
crossref_primary_10_12688_f1000research_73108_1
crossref_primary_10_1109_TIM_2021_3058367
crossref_primary_10_3390_pr10112408
crossref_primary_10_1007_s00202_024_02638_8
crossref_primary_10_12688_f1000research_73108_2
crossref_primary_10_1088_1361_6501_ab5f1b
crossref_primary_10_1016_j_conengprac_2019_104198
crossref_primary_10_1016_j_conengprac_2018_11_006
crossref_primary_10_1002_cjce_24790
crossref_primary_10_3390_pr8091079
crossref_primary_10_1088_1361_6501_ac5280
crossref_primary_10_1007_s10845_020_01581_2
crossref_primary_10_1109_TNNLS_2019_2951708
crossref_primary_10_1007_s00170_023_12678_2
crossref_primary_10_1016_j_engappai_2021_104341
crossref_primary_10_1109_TIM_2023_3324003
crossref_primary_10_1016_j_eswa_2022_119193
crossref_primary_10_1109_TASE_2019_2935314
crossref_primary_10_3390_pr13030706
crossref_primary_10_1109_TII_2018_2875149
crossref_primary_10_1016_j_conengprac_2024_105955
crossref_primary_10_1109_TIM_2025_3551563
crossref_primary_10_1109_TIM_2023_3284017
crossref_primary_10_1109_TIM_2024_3502771
crossref_primary_10_1109_TSMC_2021_3130232
crossref_primary_10_3390_s21216971
crossref_primary_10_1016_j_knosys_2025_113495
crossref_primary_10_1109_TII_2023_3295428
crossref_primary_10_1109_ACCESS_2019_2926448
crossref_primary_10_1109_TII_2020_2969709
crossref_primary_10_1109_TII_2023_3333921
crossref_primary_10_1177_09544070241275724
crossref_primary_10_1016_j_cej_2021_130298
crossref_primary_10_1109_ACCESS_2018_2877447
crossref_primary_10_1016_j_jprocont_2020_01_009
crossref_primary_10_1016_j_measurement_2019_06_029
crossref_primary_10_1016_j_ins_2022_02_049
crossref_primary_10_1016_j_engappai_2025_111681
crossref_primary_10_1109_TIE_2019_2898619
crossref_primary_10_1109_TIM_2024_3502784
crossref_primary_10_1109_TII_2018_2880968
crossref_primary_10_1016_j_compchemeng_2023_108324
crossref_primary_10_3390_s21123991
crossref_primary_10_1002_cem_3185
crossref_primary_10_1016_j_asoc_2023_110608
crossref_primary_10_1109_JSEN_2023_3336789
crossref_primary_10_1016_j_jtice_2023_105117
crossref_primary_10_1371_journal_pone_0266373
crossref_primary_10_1016_j_jprocont_2022_04_018
crossref_primary_10_1007_s10586_025_05319_8
crossref_primary_10_1016_j_bej_2021_108048
crossref_primary_10_1016_j_measurement_2020_108158
crossref_primary_10_1016_j_ces_2023_118958
crossref_primary_10_1016_j_ces_2020_115509
crossref_primary_10_1109_TASE_2023_3302794
crossref_primary_10_1016_j_ins_2021_03_026
crossref_primary_10_1109_TIM_2022_3180405
crossref_primary_10_1016_j_jtice_2024_105666
crossref_primary_10_1109_TCYB_2020_3038832
crossref_primary_10_3390_s21051846
crossref_primary_10_1109_ACCESS_2020_3009562
crossref_primary_10_1109_TII_2019_2901934
crossref_primary_10_1109_ACCESS_2019_2894764
crossref_primary_10_1109_TASE_2019_2957232
crossref_primary_10_1109_TNNLS_2019_2957366
crossref_primary_10_1016_j_eswa_2023_121428
crossref_primary_10_1016_j_compchemeng_2023_108463
crossref_primary_10_1088_1361_6501_ad66f7
crossref_primary_10_1002_cem_3040
crossref_primary_10_1016_j_measurement_2025_116761
crossref_primary_10_1109_TII_2021_3116528
crossref_primary_10_1109_TII_2024_3431087
crossref_primary_10_1109_TII_2018_2886048
crossref_primary_10_1109_TII_2022_3209238
crossref_primary_10_1109_TIM_2024_3450080
crossref_primary_10_1016_j_apenergy_2022_119608
crossref_primary_10_1109_TII_2020_3031497
crossref_primary_10_1109_TIM_2020_2993980
crossref_primary_10_1109_TII_2021_3129888
crossref_primary_10_1109_JIOT_2024_3434732
crossref_primary_10_3390_e23030339
crossref_primary_10_1007_s11042_020_09762_0
crossref_primary_10_1111_cote_12609
crossref_primary_10_1109_TII_2019_2952429
crossref_primary_10_1109_TII_2020_3008223
crossref_primary_10_1109_TBDATA_2022_3160477
crossref_primary_10_1109_TII_2023_3329684
crossref_primary_10_1109_TIM_2018_2884450
crossref_primary_10_1109_TNNLS_2022_3144162
crossref_primary_10_1016_j_conengprac_2022_105109
crossref_primary_10_1109_TIM_2021_3135537
crossref_primary_10_1002_ese3_392
crossref_primary_10_1109_TII_2023_3240923
crossref_primary_10_1002_cjce_23665
crossref_primary_10_1049_ipr2_13108
crossref_primary_10_1109_JAS_2025_125204
crossref_primary_10_1016_j_compind_2021_103489
crossref_primary_10_1088_1361_6501_addf65
crossref_primary_10_1016_j_conengprac_2023_105613
crossref_primary_10_1088_1361_6501_ad7483
crossref_primary_10_1109_TIM_2021_3075754
crossref_primary_10_1109_TII_2021_3127204
crossref_primary_10_1080_24725854_2023_2242434
crossref_primary_10_1109_TNNLS_2024_3415072
crossref_primary_10_1016_j_jprocont_2024_103300
crossref_primary_10_1088_1361_6501_ad7a14
crossref_primary_10_1002_cjce_24886
crossref_primary_10_1002_cjce_24404
crossref_primary_10_1016_j_jprocont_2024_103301
crossref_primary_10_1109_TII_2018_2869899
crossref_primary_10_1109_TII_2018_2868687
crossref_primary_10_1109_TITS_2021_3076607
crossref_primary_10_1155_2021_1682163
crossref_primary_10_1016_j_phycom_2022_101940
crossref_primary_10_1177_1477153520926200
crossref_primary_10_1007_s00521_021_05776_3
crossref_primary_10_1007_s10489_025_06368_7
crossref_primary_10_1109_TAI_2022_3145758
crossref_primary_10_1109_TIM_2020_3026456
crossref_primary_10_1109_TII_2019_2950272
crossref_primary_10_3390_s19245368
crossref_primary_10_1002_cjce_25745
crossref_primary_10_1109_TII_2021_3104111
crossref_primary_10_1016_j_chemolab_2020_104050
crossref_primary_10_1016_j_energy_2024_132477
crossref_primary_10_1109_JSEN_2023_3274156
crossref_primary_10_1109_TIM_2020_3039612
crossref_primary_10_1155_2022_5450473
crossref_primary_10_1109_TII_2018_2841658
crossref_primary_10_1109_TIM_2024_3394496
crossref_primary_10_1016_j_ifacsc_2021_100150
crossref_primary_10_1016_j_eswa_2021_115389
crossref_primary_10_1016_j_compchemeng_2023_108182
crossref_primary_10_1109_TIM_2022_3200088
crossref_primary_10_1002_cjce_23739
crossref_primary_10_1109_TII_2018_2873492
crossref_primary_10_1016_j_jprocont_2025_103401
crossref_primary_10_1109_TII_2022_3227731
crossref_primary_10_1109_TII_2023_3248059
crossref_primary_10_1016_j_chemolab_2020_104062
crossref_primary_10_1016_j_jprocont_2021_04_003
crossref_primary_10_1016_j_jprocont_2023_01_010
crossref_primary_10_1109_TII_2020_3008021
crossref_primary_10_1016_j_jprocont_2018_05_010
crossref_primary_10_3390_s25144303
crossref_primary_10_3390_s22155861
crossref_primary_10_1002_cem_3225
crossref_primary_10_1016_j_psep_2021_08_008
crossref_primary_10_1016_j_isatra_2025_05_044
crossref_primary_10_1016_j_aei_2023_102220
crossref_primary_10_1109_TASE_2019_2956087
crossref_primary_10_1016_j_jprocont_2020_11_012
crossref_primary_10_1109_TII_2020_2983749
crossref_primary_10_1109_TII_2021_3093386
crossref_primary_10_1109_TII_2019_2959784
crossref_primary_10_1007_s00521_024_10539_x
crossref_primary_10_1016_j_measurement_2020_108109
crossref_primary_10_1109_TII_2024_3371990
crossref_primary_10_3390_app11094113
crossref_primary_10_1049_el_2020_1857
crossref_primary_10_1109_TIM_2022_3205679
crossref_primary_10_1088_1757_899X_1049_1_012004
crossref_primary_10_1109_TAI_2021_3134186
crossref_primary_10_1109_TII_2020_3000204
crossref_primary_10_1007_s11581_024_05868_9
crossref_primary_10_1109_TIM_2020_2968162
crossref_primary_10_1002_cjce_23753
crossref_primary_10_1016_j_isatra_2019_07_001
crossref_primary_10_1109_TIM_2025_3578182
crossref_primary_10_1109_TII_2018_2885363
crossref_primary_10_3390_s21103430
crossref_primary_10_1109_TII_2023_3297663
crossref_primary_10_1080_00986445_2019_1641488
crossref_primary_10_1109_TII_2021_3130411
crossref_primary_10_1016_j_measurement_2020_108200
crossref_primary_10_1016_j_measurement_2020_108566
crossref_primary_10_3390_s20133743
crossref_primary_10_1109_TSM_2021_3088855
crossref_primary_10_1002_srin_202400872
crossref_primary_10_1016_j_conengprac_2025_106322
crossref_primary_10_1109_TII_2018_2889750
crossref_primary_10_3390_act13010038
crossref_primary_10_1016_j_neucom_2019_04_090
crossref_primary_10_1016_j_isatra_2019_08_023
crossref_primary_10_1109_ACCESS_2020_2968033
crossref_primary_10_1109_TII_2019_2952931
crossref_primary_10_1109_TII_2024_3475419
crossref_primary_10_3390_foods12122322
crossref_primary_10_1002_cjce_23934
crossref_primary_10_1016_j_neunet_2020_11_006
crossref_primary_10_1016_j_neucom_2021_07_086
crossref_primary_10_1016_j_chemolab_2020_104086
crossref_primary_10_1109_JSEN_2024_3351431
crossref_primary_10_1016_j_ifacol_2020_12_114
crossref_primary_10_1109_TASE_2023_3290352
crossref_primary_10_1109_TIM_2023_3264046
crossref_primary_10_1007_s11042_022_12502_1
crossref_primary_10_1109_ACCESS_2019_2961414
crossref_primary_10_1109_TNNLS_2023_3276593
crossref_primary_10_1631_FITEE_2000426
crossref_primary_10_1109_TIM_2020_2985614
crossref_primary_10_1109_JSEN_2021_3096215
crossref_primary_10_1016_j_compchemeng_2022_107857
crossref_primary_10_1109_TNNLS_2023_3321691
crossref_primary_10_1088_1361_6501_ad7a93
crossref_primary_10_1088_1361_6501_addc87
crossref_primary_10_1016_j_chemolab_2019_103921
crossref_primary_10_1016_j_measurement_2023_113477
crossref_primary_10_3390_rs13071368
crossref_primary_10_1016_j_psep_2021_09_024
crossref_primary_10_1109_TII_2019_2951622
crossref_primary_10_1016_j_ifacol_2020_12_126
crossref_primary_10_1002_cjce_24808
crossref_primary_10_1016_j_ins_2021_09_056
crossref_primary_10_1002_cem_3134
crossref_primary_10_1016_j_conengprac_2024_106181
crossref_primary_10_1088_1361_6501_ac7b6b
crossref_primary_10_1016_j_compchemeng_2021_107418
crossref_primary_10_1016_j_chemolab_2025_105535
crossref_primary_10_1109_TIM_2020_3011251
crossref_primary_10_1088_1361_6501_acf665
crossref_primary_10_3389_frai_2020_00041
crossref_primary_10_1109_TII_2019_2945411
crossref_primary_10_1109_TNNLS_2024_3453288
crossref_primary_10_1109_TCYB_2019_2948202
crossref_primary_10_1109_TIM_2025_3595248
crossref_primary_10_1109_JSEN_2020_3003826
crossref_primary_10_1109_TASE_2025_3561754
crossref_primary_10_1016_j_ifacol_2022_07_549
crossref_primary_10_1016_j_jfranklin_2020_04_024
crossref_primary_10_1016_j_engappai_2024_108361
crossref_primary_10_1109_TII_2021_3110507
crossref_primary_10_1109_ACCESS_2021_3052217
crossref_primary_10_1088_1361_6501_aba6b9
crossref_primary_10_1002_cjce_23968
crossref_primary_10_1016_j_measurement_2023_113491
crossref_primary_10_1016_j_eswa_2023_120097
crossref_primary_10_1016_j_isatra_2021_07_030
crossref_primary_10_1109_TII_2022_3161990
crossref_primary_10_1109_JSEN_2023_3279203
crossref_primary_10_3390_pr13051526
crossref_primary_10_3390_pr12040663
crossref_primary_10_1007_s00500_022_07022_x
crossref_primary_10_1109_TII_2020_3046278
crossref_primary_10_1109_ACCESS_2018_2825451
crossref_primary_10_1016_j_neucom_2023_01_010
crossref_primary_10_1109_TIM_2024_3427786
crossref_primary_10_1109_ACCESS_2025_3607733
crossref_primary_10_1016_j_cie_2020_106284
crossref_primary_10_1109_TII_2024_3399932
crossref_primary_10_3390_pr8050518
crossref_primary_10_1109_TII_2019_2902129
crossref_primary_10_1109_TIM_2020_3009354
crossref_primary_10_1109_TIM_2020_3031186
crossref_primary_10_1109_ACCESS_2020_2994913
crossref_primary_10_1109_JSEN_2020_2965988
crossref_primary_10_1109_TAI_2022_3217028
crossref_primary_10_1109_ACCESS_2019_2903906
crossref_primary_10_3390_pr12040676
crossref_primary_10_1515_htmp_2024_0067
crossref_primary_10_1016_j_conengprac_2019_05_012
crossref_primary_10_1109_TII_2023_3281835
crossref_primary_10_1515_cppm_2018_0066
crossref_primary_10_1007_s13762_022_03940_3
crossref_primary_10_1016_j_ins_2020_06_062
crossref_primary_10_1109_JSEN_2024_3367909
crossref_primary_10_1016_j_conengprac_2024_106020
crossref_primary_10_1109_TASE_2019_2896205
crossref_primary_10_1109_TII_2019_2938890
crossref_primary_10_1016_j_chemolab_2022_104679
crossref_primary_10_1088_1361_6501_ad8be6
crossref_primary_10_1016_j_conengprac_2021_104914
crossref_primary_10_1109_TASE_2023_3259165
crossref_primary_10_1016_j_jprocont_2021_11_001
crossref_primary_10_3390_polym14051018
crossref_primary_10_1007_s40194_021_01211_2
crossref_primary_10_1109_ACCESS_2020_3006729
crossref_primary_10_1016_j_jprocont_2020_05_015
crossref_primary_10_1016_j_jprocont_2020_05_012
crossref_primary_10_1109_JSEN_2023_3266104
crossref_primary_10_1109_TII_2022_3181692
crossref_primary_10_1109_TII_2023_3268740
crossref_primary_10_1109_ACCESS_2021_3057382
crossref_primary_10_1109_TIE_2019_2891449
crossref_primary_10_1016_j_aei_2020_101136
crossref_primary_10_1016_j_aei_2021_101434
crossref_primary_10_1049_smt2_12092
crossref_primary_10_1109_TII_2021_3086798
crossref_primary_10_1109_TII_2021_3131471
crossref_primary_10_1016_j_conengprac_2018_10_005
crossref_primary_10_1016_j_conengprac_2020_104626
crossref_primary_10_1016_j_ins_2019_11_039
crossref_primary_10_1109_TII_2020_3027746
crossref_primary_10_1109_TIM_2019_2943824
crossref_primary_10_1016_j_ces_2021_116560
crossref_primary_10_1109_TIE_2023_3279576
crossref_primary_10_1016_j_jprocont_2021_07_013
crossref_primary_10_1016_j_jprocont_2025_103373
crossref_primary_10_1016_j_jtice_2022_104483
crossref_primary_10_1109_ACCESS_2021_3079184
crossref_primary_10_1109_TII_2020_3000194
crossref_primary_10_1080_13504851_2025_2491726
crossref_primary_10_1002_srin_202200680
crossref_primary_10_1016_j_engappai_2024_109711
crossref_primary_10_1016_j_measurement_2020_108782
crossref_primary_10_1109_TIM_2024_3493884
crossref_primary_10_1109_TIM_2024_3472794
crossref_primary_10_1016_j_sna_2021_112803
crossref_primary_10_1109_ACCESS_2020_2966260
crossref_primary_10_1109_TII_2019_2902560
crossref_primary_10_1016_j_asoc_2020_107072
crossref_primary_10_1088_1361_6501_ac86e6
crossref_primary_10_1109_ACCESS_2021_3110510
crossref_primary_10_1109_TCSS_2023_3272330
crossref_primary_10_1007_s11356_023_27630_w
crossref_primary_10_3390_pr12091807
crossref_primary_10_1109_TNNLS_2020_2985223
crossref_primary_10_1016_j_chemolab_2018_09_009
crossref_primary_10_1145_3420038
crossref_primary_10_1088_1361_6501_ad5612
crossref_primary_10_1109_TIM_2021_3094834
crossref_primary_10_1016_j_apenergy_2021_116847
crossref_primary_10_1016_j_bspc_2023_105039
crossref_primary_10_1016_j_dche_2021_100008
crossref_primary_10_1016_j_cherd_2024_11_003
crossref_primary_10_1109_TSMC_2023_3322195
crossref_primary_10_1109_TII_2025_3547031
crossref_primary_10_3390_s21124043
crossref_primary_10_1109_JSTARS_2021_3103176
crossref_primary_10_1007_s11277_024_10958_y
crossref_primary_10_1109_TII_2024_3353921
crossref_primary_10_1016_j_knosys_2022_108510
crossref_primary_10_1109_TIE_2018_2868316
crossref_primary_10_1016_j_conengprac_2019_104235
crossref_primary_10_1109_TIM_2024_3373085
crossref_primary_10_1016_j_chemolab_2025_105499
crossref_primary_10_1016_j_arcontrol_2022_09_005
crossref_primary_10_1016_j_chemolab_2022_104624
crossref_primary_10_1016_j_ins_2020_04_013
crossref_primary_10_1088_1361_6501_aceb82
crossref_primary_10_1016_j_knosys_2021_107350
crossref_primary_10_1016_j_energy_2023_127846
crossref_primary_10_1016_j_ins_2020_11_039
crossref_primary_10_1109_TCYB_2021_3067786
crossref_primary_10_1109_TIM_2023_3278292
crossref_primary_10_1109_TIM_2024_3428604
crossref_primary_10_1371_journal_pone_0321559
crossref_primary_10_1109_TII_2022_3220857
crossref_primary_10_1016_j_ins_2021_12_131
crossref_primary_10_1016_j_isatra_2020_03_011
Cites_doi 10.1002/aic.14299
10.1109/TIE.2017.2733448
10.1016/j.jprocont.2013.05.007
10.1109/TIM.2017.2658158
10.1002/aic.14663
10.1038/nature14539
10.1016/j.compchemeng.2007.07.005
10.1109/TPAMI.2016.2577031
10.1016/j.ultras.2016.09.011
10.1109/TIE.2017.2739691
10.1109/TIM.2006.887331
10.1109/TII.2012.2214394
10.1109/TIE.2017.2733443
10.1109/TII.2016.2612640
10.1109/TII.2016.2610839
10.1016/j.compchemeng.2008.12.012
10.1109/TNNLS.2016.2599820
10.1021/ie4041252
10.1109/TPAMI.2013.50
10.1016/j.jprocont.2014.01.012
10.1109/TIE.2016.2622668
10.1109/SMC.2017.8122666
10.1162/neco.2006.18.7.1527
10.1109/TII.2009.2025124
10.1109/TII.2013.2283147
10.1016/j.conengprac.2004.04.013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2018.2809730
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 3243
ExternalDocumentID 10_1109_TII_2018_2809730
8302941
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 61703440
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 61621062
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 61590921; B17048
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-c1fb182e907661c2f271e08b85e233cbda751efbf8fb3d93dd0fb5703cd26d3a3
IEDL.DBID RIE
ISICitedReferencesCount 307
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437883400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:19:59 EDT 2025
Tue Nov 18 22:34:16 EST 2025
Sat Nov 29 04:40:23 EST 2025
Wed Aug 27 08:33:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c1fb182e907661c2f271e08b85e233cbda751efbf8fb3d93dd0fb5703cd26d3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0312-436X
0000-0002-1876-7707
0000-0003-2550-1509
0000-0002-9072-7179
0000-0001-9082-2216
PQID 2064310153
PQPubID 85507
PageCount 9
ParticipantIDs proquest_journals_2064310153
crossref_citationtrail_10_1109_TII_2018_2809730
crossref_primary_10_1109_TII_2018_2809730
ieee_primary_8302941
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
schölkopf (ref28) 0
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
fortuna (ref30) 2007
ref7
lecun (ref18) 2015; 521
ref4
huang (ref9) 2012
ref3
ref6
rosipal (ref15) 2002; 2
ref5
References_xml – ident: ref13
  doi: 10.1002/aic.14299
– ident: ref27
  doi: 10.1109/TIE.2017.2733448
– ident: ref1
  doi: 10.1016/j.jprocont.2013.05.007
– ident: ref10
  doi: 10.1109/TIM.2017.2658158
– ident: ref11
  doi: 10.1002/aic.14663
– year: 2012
  ident: ref9
  publication-title: Dynamic Modelling and Predictive Control in Solid Oxide Fuel Cells First Principle and Data-Based Approaches
– volume: 521
  start-page: 436
  year: 2015
  ident: ref18
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref3
  doi: 10.1016/j.compchemeng.2007.07.005
– ident: ref24
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref19
  doi: 10.1016/j.ultras.2016.09.011
– ident: ref21
  doi: 10.1109/TIE.2017.2739691
– ident: ref12
  doi: 10.1109/TIM.2006.887331
– ident: ref5
  doi: 10.1109/TII.2012.2214394
– ident: ref8
  doi: 10.1109/TIE.2017.2733443
– volume: 2
  start-page: 97
  year: 2002
  ident: ref15
  article-title: Kernel partial least squares regression in reproducing kernel hilbert space
  publication-title: J Mach Learn Res
– ident: ref22
  doi: 10.1109/TII.2016.2612640
– ident: ref4
  doi: 10.1109/TII.2016.2610839
– ident: ref2
  doi: 10.1016/j.compchemeng.2008.12.012
– ident: ref23
  doi: 10.1109/TNNLS.2016.2599820
– ident: ref14
  doi: 10.1021/ie4041252
– ident: ref17
  doi: 10.1109/TPAMI.2013.50
– start-page: 153
  year: 0
  ident: ref28
  article-title: Greedy layer-wise training of deep networks
  publication-title: Proc Int Conf Neural Inf Process
– year: 2007
  ident: ref30
  publication-title: Soft Sensors for Monitoring and Control of Industrial Processes
– ident: ref25
  doi: 10.1016/j.jprocont.2014.01.012
– ident: ref26
  doi: 10.1109/TIE.2016.2622668
– ident: ref20
  doi: 10.1109/SMC.2017.8122666
– ident: ref16
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref7
  doi: 10.1109/TII.2009.2025124
– ident: ref6
  doi: 10.1109/TII.2013.2283147
– ident: ref29
  doi: 10.1016/j.conengprac.2004.04.013
SSID ssj0037039
Score 2.6439185
Snippet In modern industrial processes, soft sensors have played an important role for effective process control, optimization, and monitoring. Feature representation...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3235
SubjectTerms Correlation analysis
Data mining
Deep learning
Feature extraction
Feature recognition
Industrial applications
Informatics
Machine learning
Monitoring
Multilayers
Neural networks
output prediction
Pattern recognition
Process control
Representations
Sensors
soft sensor
stacked autoencoder (SAE)
Training
variable-wise weighted SAE (VW-SAE)
Title Deep Learning-Based Feature Representation and Its Application for Soft Sensor Modeling With Variable-Wise Weighted SAE
URI https://ieeexplore.ieee.org/document/8302941
https://www.proquest.com/docview/2064310153
Volume 14
WOSCitedRecordID wos000437883400042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5VPOjBt1itkoMXwdjdpOsmx_rCgohYtd6WbDLRgqzSbvXvO0m3VVEEbzkkYdkvmUdm5htC9mKLRjwXjhkdJayVCJSDMjEMjQ8ndSvlJgTa7y_Tqyv58KCua-RgWgsDACH5DA79MMTy7YsZ-aeypueqUr5KfSZNj8a1WhOpK_DkqsCNmsRM8EhMQpKRat52Oj6HSx5y6clpom8qKPRU-SGIg3Y5X_rfdy2TxcqKpO0x7CukBsUqWfjCLbhG3k8BXmlFn_rIjlFbWeoNvtEA6E3If63KjgqqC0s75ZC2P6PZFI1Z2kUZTbvo6OLYN03zpeu01y-f6D262L7oivX6Q6C98L6K-3fbZ-vk7vzs9uSCVV0WmOEqLpmJXY5OBqCXjLracMfTGCKZywS4ECa3Ok1icLmTLhdWCWsjl3veLmP5kRVabJDZ4qWATUKVy0GCzYEr3bK6pXEWCA2p4dZXS9VJc_LjM1NRkPtOGM9ZcEUilSFUmYcqq6Cqk_3pitcx_cYfc9c8NNN5FSp10phgm1X3c4jr0BJDaZSIrd9XbZN5v_c4MbdBZsvBCHbInHkr-8PBbjh6H_f21sQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NAwl4YMCYKNvAD7wg4TWxE2I_dl9aRVdNtKx7ixz7DJVQNrUp-_d3dtOOCYTEmx9sJ8o59-G73-8APqSOnHghPbcmyXmWS9KDKrecnA-vTFYIGxPtl4NiOFRXV_piAz6tsTCIGIvP8CAMYy7fXdtFuCrrBq4qHVDqj_IsE8kSrbXSu5LOro7sqHnKpUjkKimZ6O643w9VXOpAqEBPkzwwQrGryh-qONqX063_e7MX8Lz1I1lvKfiXsIH1K3j2G7vgNtweI96wlkD1Oz8ke-VYcPkWM2RfYwVsCzyqmakd6zdz1rvPZzNyZ9mItDQbUahL49A2LYDX2WTa_GCXFGQH2BWfTOfIJvGGlfYf9U5ew7fTk_HRGW_7LHArdNpwm_qKwgykOJmstRVeFCkmqlI5Cilt5UyRp-grr3wlnZbOJb4KzF3Wic9OGrkDm_V1jW-AaV-hQleh0CZzJjM0C6XBwgoX8FId6K4-fGlbEvLQC-NnGYORRJckqjKIqmxF1YGP6xU3SwKOf8zdDqJZz2ul0oG9lWzL9g-d0zryxUgf5fLt31e9hydn4_NBOegPv-zC0_CcZZnuHmw2swXuw2P7q5nOZ-_iMbwDSRfaCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Feature+Representation+and+Its+Application+for+Soft+Sensor+Modeling+With+Variable-Wise+Weighted+SAE&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Yuan%2C+Xiaofeng&rft.au=Huang%2C+Biao&rft.au=Wang%2C+Yalin&rft.au=Yang%2C+Chunhua&rft.date=2018-07-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=14&rft.issue=7&rft.spage=3235&rft.epage=3243&rft_id=info:doi/10.1109%2FTII.2018.2809730&rft.externalDocID=8302941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon