The Dynamics on Soliton Molecules and Soliton Bifurcation for an Extended Generalization of Vakhnenko Equation

Vakhnenko-type equations play a critical role in nonlinear electromagnetic and optical fiber applications. In this article, we present a new advancement in high-frequency wave propagation in electromagnetic and optical fiber applications by investigating an extended generalization of the Vakhnenko e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Qualitative theory of dynamical systems Ročník 23; číslo 3
Hlavní autoři: Ma, Yu-Lan, Li, Bang-Qing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.07.2024
Témata:
ISSN:1575-5460, 1662-3592
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Vakhnenko-type equations play a critical role in nonlinear electromagnetic and optical fiber applications. In this article, we present a new advancement in high-frequency wave propagation in electromagnetic and optical fiber applications by investigating an extended generalization of the Vakhnenko equation. In our study, we employ the bilinear method and introduce an auxiliary function that combines exponential and cosine functions. By utilizing this approach, we are able to derive two distinct sets of analytical solutions for the equation. By choosing suitable parameters involved in the solutions, we identify the presence of soliton molecules and soliton bifurcation in the equation. Furthermore, for the soliton molecules, we note the existence of two distinct types of phase transitions: (i) a transition from soliton molecules to loop-like breathers, and (ii) a transition from soliton molecules to intersection solitons. Regarding soliton bifurcation, we observe phase transitions among loop-like, cusp-like, and peak-like solitons. Moreover, the results of this study illuminate that the structures of all solitons, within the context of soliton molecules and soliton bifurcation, remain stable throughout the phase transitions. This stability carries considerable significance for practical applications.
AbstractList Vakhnenko-type equations play a critical role in nonlinear electromagnetic and optical fiber applications. In this article, we present a new advancement in high-frequency wave propagation in electromagnetic and optical fiber applications by investigating an extended generalization of the Vakhnenko equation. In our study, we employ the bilinear method and introduce an auxiliary function that combines exponential and cosine functions. By utilizing this approach, we are able to derive two distinct sets of analytical solutions for the equation. By choosing suitable parameters involved in the solutions, we identify the presence of soliton molecules and soliton bifurcation in the equation. Furthermore, for the soliton molecules, we note the existence of two distinct types of phase transitions: (i) a transition from soliton molecules to loop-like breathers, and (ii) a transition from soliton molecules to intersection solitons. Regarding soliton bifurcation, we observe phase transitions among loop-like, cusp-like, and peak-like solitons. Moreover, the results of this study illuminate that the structures of all solitons, within the context of soliton molecules and soliton bifurcation, remain stable throughout the phase transitions. This stability carries considerable significance for practical applications.
ArticleNumber 137
Author Ma, Yu-Lan
Li, Bang-Qing
Author_xml – sequence: 1
  givenname: Yu-Lan
  surname: Ma
  fullname: Ma, Yu-Lan
  organization: School of Mathematics and Statistics, Beijing Technology and Business University
– sequence: 2
  givenname: Bang-Qing
  surname: Li
  fullname: Li, Bang-Qing
  email: libq@th.btbu.edu.cn
  organization: School of Computer and Artificial Intelligence, Beijing Technology and Business University, Academy of Systems Science, Beijing Technology and Business University
BookMark eNp9kE1OwzAQhS0EEm3hAqxygYD_4iRLKKUgFbGgsI1ce0zdpjbYiUQ5PaZFLFh0NaP35hvNvCE6dt4BQhcEXxKMy6tIKOMix5TnOAk0p0doQISgOStqepz6oizyggt8ioYxrjAWtGR0gNx8Cdnt1smNVTHzLnv2re1SffQtqL6FmEmn_9Qba_qgZGdTb3xIXjb57MBp0NkUHATZ2q-97U32KtdLB27ts8lHv1PP0ImRbYTz3zpCL3eT-fg-nz1NH8bXs1zRmnT5whRcKUFVrXnJScXrShutuMTAhBGlYooQyhkIrZQsCMiK0dKYBYCUnGg2QtV-rwo-xgCmUbbbXdAFaduG4OYnt2afW5Nya3a5NTSh9B_6HuxGhu1hiO2hmIbdG4Rm5fvg0ouHqG-OQIS5
CitedBy_id crossref_primary_10_1007_s44198_025_00317_1
crossref_primary_10_1007_s12346_024_01163_0
crossref_primary_10_1007_s12346_024_01103_y
crossref_primary_10_1016_j_optlastec_2025_112647
crossref_primary_10_1007_s12346_024_01125_6
crossref_primary_10_1007_s12346_024_01176_9
crossref_primary_10_1002_mma_10764
crossref_primary_10_1016_j_matcom_2025_07_058
crossref_primary_10_1016_j_optlastec_2024_112065
crossref_primary_10_1080_00207160_2024_2435017
crossref_primary_10_1007_s12346_025_01310_1
crossref_primary_10_1007_s12346_025_01241_x
crossref_primary_10_1016_j_cjph_2024_12_006
Cites_doi 10.1103/PhysRevA.89.063814
10.1080/25765299.2023.2256049
10.1063/5.0080508
10.1016/j.rinp.2020.103329
10.1016/j.physd.2017.11.001
10.1038/nphoton.2011.345
10.1088/0951-7715/12/5/314
10.1016/j.chaos.2003.09.043
10.1007/s12346-022-00689-5
10.1016/S0960-0779(01)00200-4
10.1142/S0217984918503177
10.1007/s11082-023-04866-x
10.1016/j.cnsns.2023.107117
10.1103/PhysRevE.67.046610
10.1103/PhysRevA.105.053525
10.1143/PTP.52.1498
10.1364/OE.18.007625
10.1007/s11071-020-05695-3
10.1007/s11071-020-06024-4
10.1007/s11071-022-07984-5
10.1007/s11071-023-08319-8
10.1016/j.physd.2019.05.008
10.1166/jap.2014.1104
10.1016/j.chaos.2003.10.014
10.1007/s11082-023-04912-8
10.1007/s11071-023-09012-6
10.1007/s11071-022-08087-x
10.1016/S0960-0779(02)00483-6
10.1007/s11071-023-08683-5
10.1016/j.rinp.2022.105755
10.1088/0305-4470/25/15/025
10.1007/s11071-022-07315-8
10.1016/S0960-0779(02)00314-4
10.1007/s11071-020-05570-1
10.1103/PhysRevLett.85.844
10.1016/j.physleta.2023.129134
10.1038/nature14341
10.1364/JOSAB.28.000A11
10.3390/fractalfract7060426
10.21203/rs.3.rs-3210751/v1
10.1007/s11071-023-08938-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s12346-024-01002-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1662-3592
ExternalDocumentID 10_1007_s12346_024_01002_2
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3J0
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DC1
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-bf54cc62c9d47418498dfdc4a0e36f67c3c11243e6dcca51ea8327ffbeeaa41d3
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001184312600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1575-5460
IngestDate Tue Nov 18 21:24:04 EST 2025
Sat Nov 29 06:14:56 EST 2025
Fri Feb 21 02:41:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Extended generalization of Vakhnenko equation
Bilinear method
Soliton bifurcation
Soliton molecules
Phase transition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-bf54cc62c9d47418498dfdc4a0e36f67c3c11243e6dcca51ea8327ffbeeaa41d3
ParticipantIDs crossref_citationtrail_10_1007_s12346_024_01002_2
crossref_primary_10_1007_s12346_024_01002_2
springer_journals_10_1007_s12346_024_01002_2
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Qualitative theory of dynamical systems
PublicationTitleAbbrev Qual. Theory Dyn. Syst
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Wazwaz (CR53) 2010; 82
Iqbal, Miah, Rasid, Alshehri, Osman (CR11) 2023; 30
Vakhnenko (CR42) 1992; 25
Ismael, Bulut, Park, Osman (CR7) 2020; 19
Tariq, Younis, Rezazadeh, Rizvi, Osman (CR5) 2018; 32
Hirota (CR55) 1974; 52
Wang, Zhou, Liu (CR34) 2022; 31
Iqbal, Rehman, Mirzazadeh, Hashemi (CR16) 2023; 55
Travers, Chang, Nold, Joly, Russell (CR39) 2011; 28
Morrison, Parkes, Vakhnenko (CR43) 1999; 12
Mohan, Kumar, Kumar (CR20) 2023; 111
Kumar, Mohan, Kumar (CR21) 2023; 98
Vakhnenko, Parkes, Morrison (CR46) 2003; 17
Rehman, Awan, Habib, Gamaoun, Din, Galal (CR12) 2022; 39
Wang, Tang, Lou (CR33) 2004; 21
Zhang, Wen, Lin (CR18) 2022; 36
Kumar, Mohan (CR22) 2023; 111
Kumar, Mohan (CR23) 2021; 96
Chen, Mihalache, Jin, Li, Rao (CR2) 2023; 75
Rehman, Awan, Abro, El Din, Jafar, Galal (CR13) 2022; 34
Tasnim, Akbar, Osman (CR9) 2023; 7
Bencivenga, Cucini, Capotondi, Battistoni, Mincigrucci, Giangrisostomi, Gessini, Manfredda, Nikolov, Pedersoli, Principi, Svetina, Parisse, Casolari, Danailov, Kiskinova, Masciovecchio (CR40) 2015; 520
Lin, Wen (CR52) 2023; 111
Vakhnenko, Parkes (CR44) 2002; 13
Kumar, Niwas, Osman, Abdou (CR8) 2021; 37
Zhang, Yang, Li (CR30) 2020; 100
Ankiewicz (CR1) 2023; 75
Grelu, Akhmediev (CR27) 2012; 6
Ismael, Sulaiman, Nabi, Mahmoud, Osman (CR10) 2023; 111
Willms, Melchert, Bose, Yulin, Oreshnikov, Morgner, Babushkin, Demircan (CR29) 2022; 105
Leblond, Mihalache (CR37) 2013; 523
Houwe, Abbagari, Akinyemi, Saliou, Justin, Doka (CR3) 2023; 488
Li, Ma (CR54) 2020; 102
Akinyemi, Morazara (CR4) 2023; 111
CR14
Zhang, Yan, Wen (CR17) 2018; 366
Ma, Wazwaz, Li (CR32) 2022; 21
Kumar, Niwas (CR19) 2023; 111
Morrison, Parkes (CR45) 2003; 16
Rajan, Veni, Wazwaz (CR24) 2023; 55
Vakhnenko, Parkes (CR47) 2004; 20
Lin, Wen (CR51) 2023; 451
Lin, Wen (CR50) 2022; 39
Lin, Wen (CR49) 2022; 2022
Rajan, Veni (CR25) 2022; 159
Jia, Lin, Lou (CR31) 2020; 100
Younis, Iftikhar, Rehman (CR15) 2014; 3
Peccianti, Ferrera, Razzari, Morandotti, Little, Chu, Moss (CR38) 2010; 18
Godey, Balakireva, Coillet, Chembo (CR28) 2014; 89
CR26
Ahmad, Saifullah, Khan, Wazwaz (CR35) 2023; 119
Koopmans, van Kampen, Kohlhepp, de Jonge (CR36) 2000; 85
Kumar, Park, Tamanna, Paul, Osman (CR6) 2020; 19
Grivickas, Austin, Armstrong, Radousky, Belof (CR41) 2022; 131
Zhang, Rao, Cheng, He (CR48) 2019; 399
P Grelu (1002_CR27) 2012; 6
S Kumar (1002_CR22) 2023; 111
MSM Rajan (1002_CR25) 2022; 159
Z Lin (1002_CR51) 2023; 451
A Ankiewicz (1002_CR1) 2023; 75
M Younis (1002_CR15) 2014; 3
SG Chen (1002_CR2) 2023; 75
D Kumar (1002_CR6) 2020; 19
M Peccianti (1002_CR38) 2010; 18
VO Vakhnenko (1002_CR44) 2002; 13
F Bencivenga (1002_CR40) 2015; 520
A Houwe (1002_CR3) 2023; 488
R Hirota (1002_CR55) 1974; 52
VO Vakhnenko (1002_CR47) 2004; 20
T Zhang (1002_CR18) 2022; 36
S Wang (1002_CR33) 2004; 21
S Kumar (1002_CR23) 2021; 96
TY Wang (1002_CR34) 2022; 31
1002_CR26
HU Rehman (1002_CR13) 2022; 34
YL Ma (1002_CR32) 2022; 21
Z Lin (1002_CR52) 2023; 111
Z Lin (1002_CR50) 2022; 39
JC Travers (1002_CR39) 2011; 28
S Kumar (1002_CR8) 2021; 37
HU Rehman (1002_CR12) 2022; 39
VO Vakhnenko (1002_CR46) 2003; 17
S Kumar (1002_CR19) 2023; 111
AJ Morrison (1002_CR43) 1999; 12
HF Ismael (1002_CR10) 2023; 111
B Mohan (1002_CR20) 2023; 111
P Grivickas (1002_CR41) 2022; 131
L Akinyemi (1002_CR4) 2023; 111
KU Tariq (1002_CR5) 2018; 32
HF Ismael (1002_CR7) 2020; 19
H Leblond (1002_CR37) 2013; 523
1002_CR14
I Iqbal (1002_CR16) 2023; 55
S Willms (1002_CR29) 2022; 105
MSM Rajan (1002_CR24) 2023; 55
F Tasnim (1002_CR9) 2023; 7
GQ Zhang (1002_CR17) 2018; 366
YS Zhang (1002_CR48) 2019; 399
S Ahmad (1002_CR35) 2023; 119
AJ Morrison (1002_CR45) 2003; 16
VO Vakhnenko (1002_CR42) 1992; 25
Z Zhang (1002_CR30) 2020; 100
C Godey (1002_CR28) 2014; 89
B Koopmans (1002_CR36) 2000; 85
S Kumar (1002_CR21) 2023; 98
M Jia (1002_CR31) 2020; 100
BQ Li (1002_CR54) 2020; 102
MA Iqbal (1002_CR11) 2023; 30
Z Lin (1002_CR49) 2022; 2022
AM Wazwaz (1002_CR53) 2010; 82
References_xml – volume: 19
  year: 2020
  ident: CR6
  article-title: Dynamics of two-mode Sawada-Kotera equation: mathematical and graphical analysis of its dual-wave solutions
  publication-title: Results Phys.
– volume: 100
  start-page: 3745
  year: 2020
  end-page: 3757
  ident: CR31
  article-title: Soliton and breather molecules in few-cycle-pulse optical model
  publication-title: Nonlinear Dyn.
– volume: 111
  start-page: 16395
  year: 2023
  end-page: 16405
  ident: CR22
  article-title: A direct symbolic computation of center-controlled rogue waves to a new Painlevé-integrable (3+1)-D generalized nonlinear evolution equation in plasmas
  publication-title: Nonlinear Dyn.
– volume: 19
  year: 2020
  ident: CR7
  article-title: M-lump, N-soliton solutions, and the collision phenomena for the (2+ 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation
  publication-title: Results Phys.
– volume: 96
  start-page: 12
  year: 2021
  ident: CR23
  article-title: A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coefficient using Hirota method
  publication-title: Phys. Scr.
– volume: 17
  start-page: 683
  year: 2003
  end-page: 692
  ident: CR46
  article-title: A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation
  publication-title: Chaos Solitons Fractals
– volume: 111
  start-page: 22457
  year: 2023
  end-page: 22475
  ident: CR19
  article-title: Analyzing multi-peak and lump solutions of the variable-coefficient Boiti-Leon-Manna-Pempinelli equation: a comparative study of the Lie classical method and unified method with applications
  publication-title: Nonlinear Dyn.
– volume: 7
  start-page: 426
  year: 2023
  ident: CR9
  article-title: The extended direct algebraic method for extracting analytical solitons solutions to the cubic nonlinear Schrödinger equation involving beta derivatives in space and time
  publication-title: Fractal Fract.
– volume: 89
  year: 2014
  ident: CR28
  article-title: Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes
  publication-title: Phys. Rev. A
– volume: 520
  start-page: 205
  year: 2015
  ident: CR40
  article-title: Four-wave mixing experiments with extreme ultraviolet transient gratings
  publication-title: Nature
– volume: 52
  start-page: 1498
  year: 1974
  end-page: 1512
  ident: CR55
  article-title: A new form of Bäcklund transformations and its relation to the inverse scattering problem
  publication-title: Prog. Theor. Phys.
– volume: 30
  start-page: 535
  year: 2023
  end-page: 545
  ident: CR11
  article-title: An investigation of two integro-differential KP hierarchy equations to find out closed form solitons in mathematical physics
  publication-title: Arab J. Basic Appl. Sci.
– volume: 13
  start-page: 1819
  year: 2002
  end-page: 1826
  ident: CR44
  article-title: The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method
  publication-title: Chaos Solitons Fractals
– volume: 16
  start-page: 13
  year: 2003
  end-page: 26
  ident: CR45
  article-title: The N-soliton solution of the modified generalised Vakhnenko equation (a new nonlinear evolution equation)
  publication-title: Chaos Solitons Fractals
– volume: 523
  start-page: 61
  year: 2013
  end-page: 126
  ident: CR37
  article-title: Models of few optical cycle solitons beyond the slowly varying envelope approximation
  publication-title: Phys. Rep. Rev. Sec. Phys. Lett.
– volume: 85
  start-page: 844
  year: 2000
  end-page: 847
  ident: CR36
  article-title: Ultrafast magneto-optics in nickel: magnetism or optics?
  publication-title: Phys. Rev. Lett.
– volume: 34
  year: 2022
  ident: CR13
  article-title: A non-linear study of optical solitons for Kaup-Newell equation without four-wave mixing
  publication-title: J. King Saud Univ. Sci.
– volume: 39
  year: 2022
  ident: CR50
  article-title: Continuous limit and location-manageable discrete loop rogue wave solutions for the semi-discrete complex short pulse equation
  publication-title: Results Phys.
– volume: 131
  year: 2022
  ident: CR41
  article-title: Phase transitions in Zr at sub-nanosecond time scales
  publication-title: J. Appl. Phys.
– volume: 55
  start-page: 703
  year: 2023
  ident: CR24
  article-title: Self-steepening nature and nonlinearity management of optical solitons with the influence of generalized external potentials
  publication-title: Opt. Quant. Electron.
– volume: 20
  start-page: 1059
  year: 2004
  end-page: 1073
  ident: CR47
  article-title: Periodic and solitary-wave solutions of the Degasperis-Procesi equation
  publication-title: Chaos Solitons Fractals
– volume: 2022
  start-page: 2573
  year: 2022
  end-page: 2593
  ident: CR49
  article-title: Dynamical analysis of position-controllable loop rogue wave and mixed interaction phenomena for the complex short pulse equation in optical fiber
  publication-title: Nonlinear Dyn.
– volume: 28
  start-page: A11
  year: 2011
  end-page: A26
  ident: CR39
  article-title: Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers
  publication-title: J. Opt. Soc. Am. B
– volume: 111
  start-page: 4683
  year: 2023
  end-page: 4707
  ident: CR4
  article-title: Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev-Petviashvili equation
  publication-title: Nonlinear Dyn.
– volume: 100
  start-page: 1551
  year: 2020
  end-page: 1557
  ident: CR30
  article-title: Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation
  publication-title: Nonlinear Dyn.
– volume: 111
  start-page: 3633
  year: 2023
  end-page: 3651
  ident: CR52
  article-title: Singular-loop rogue wave and mixed interaction solutions with location control parameters for Wadati-Konno-Ichikawa equation
  publication-title: Nonlinear Dyn.
– volume: 18
  start-page: 7625
  year: 2010
  end-page: 7633
  ident: CR38
  article-title: Subpicosecond optical pulse compression via an integrated nonlinear chirper
  publication-title: Opt. Express
– volume: 119
  year: 2023
  ident: CR35
  article-title: Resonance, fusion and fission dynamics of bifurcation solitons and hybrid rogue wave structures of Sawada-Kotera equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 399
  start-page: 173
  year: 2019
  end-page: 185
  ident: CR48
  article-title: Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation: N simple poles and one higher-order pole
  publication-title: Physica D
– ident: CR26
– volume: 75
  start-page: 109
  year: 2023
  ident: CR1
  article-title: Comparison of complex potential and Lagrangian approaches to soliton evolution
  publication-title: Rom. Rep. Phys.
– volume: 37
  year: 2021
  ident: CR8
  article-title: Abundant different types of exact soliton solution to the (4+1)-dimensional Fokas and (2+1)-dimensional breaking soliton equations
  publication-title: Commun. Theor. Phys.
– volume: 6
  start-page: 84
  year: 2012
  end-page: 92
  ident: CR27
  article-title: Dissipative solitons for mode-locked lasers
  publication-title: Nat. Photonic
– volume: 488
  year: 2023
  ident: CR3
  article-title: Modulation instability, bifurcation analysis and Solitonic waves in nonlinear optical media with odd-order dispersion
  publication-title: Phys. Lett. A
– ident: CR14
– volume: 98
  year: 2023
  ident: CR21
  article-title: Newly formed center-controlled rouge wave and lump solutions of a generalized (3+1)-dimensional KdV-BBM equation via symbolic computation approach
  publication-title: Phys. Scr.
– volume: 3
  start-page: 77
  year: 2014
  end-page: 79
  ident: CR15
  article-title: Exact solutions to the nonlinear Schrödinger and Eckhaus equations by modified simple equation Method
  publication-title: J. Adv. Phys.
– volume: 55
  start-page: 588
  year: 2023
  ident: CR16
  article-title: Retrieval of optical solitons for nonlinear models with Kudryashov’s quintuple power law and dual-form nonlocal nonlinearity
  publication-title: Opt. Quant. Electron.
– volume: 111
  start-page: 9457
  year: 2023
  end-page: 9466
  ident: CR10
  article-title: Geometrical patterns of time variable Kadomtsev-Petviashvili (I) equation that models dynamics of waves in thin films with high surface tension
  publication-title: Nonlinear Dyn.
– volume: 159
  year: 2022
  ident: CR25
  article-title: Impact of external potential and non-isospectral functions on optical solitons and modulation instability in a cubic quintic nonlinear media
  publication-title: Chaos Soliton Fract.
– volume: 12
  start-page: 1427
  year: 1999
  end-page: 1437
  ident: CR43
  article-title: The N loop soliton solution of the Vakhnenko equation
  publication-title: Nonlinearity
– volume: 39
  year: 2022
  ident: CR12
  article-title: Solitary wave solutions for a strain wave equation in a microstructured solid
  publication-title: Results Phys.
– volume: 36
  year: 2022
  ident: CR18
  article-title: Continuous limit, various exact solutions, kink soliton resonant phenomena and dynamical behaviors for a discrete Burgers equation
  publication-title: Results Phys.
– volume: 21
  start-page: 158
  year: 2022
  ident: CR32
  article-title: A new (3+1)-dimensional Sakovich equation in nonlinear wave motion: Painlevé integrability, multiple solitons and soliton molecules
  publication-title: Qual. Theor. Dyn. Syst.
– volume: 451
  year: 2023
  ident: CR51
  article-title: Hodograph transformation, various exact solutions and dynamical analysis for the complex Wadati-Konno-Ichikawa-II equation
  publication-title: Physica D
– volume: 102
  start-page: 1787
  year: 2020
  end-page: 1799
  ident: CR54
  article-title: Interaction dynamics of hybrid solitons and breathers for extended generalization of Vakhnenko equation
  publication-title: Nonlinear Dyn.
– volume: 21
  start-page: 231
  year: 2004
  end-page: 239
  ident: CR33
  article-title: Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation
  publication-title: Chaos Soliton Fract.
– volume: 32
  start-page: 1850317
  year: 2018
  ident: CR5
  article-title: Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution
  publication-title: Mod. Phys. Lett. B
– volume: 82
  year: 2010
  ident: CR53
  article-title: N-soliton solutions for the Vakhnenko equation and its generalized forms
  publication-title: Phys. Scr.
– volume: 366
  start-page: 27
  year: 2018
  end-page: 42
  ident: CR17
  article-title: Three-wave resonant interactions: multi-dark-dark-dark solitons, breathers, rogue waves, and their interactions and dynamics
  publication-title: Physica D
– volume: 31
  year: 2022
  ident: CR34
  article-title: Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
  publication-title: Chin. Phys. B
– volume: 75
  start-page: 108
  year: 2023
  ident: CR2
  article-title: Bright solitons in the space-shifted PT-symmetric nonlocal nonlinear Schrödinger equation
  publication-title: Rom. Rep. Phys.
– volume: 25
  start-page: 4181
  year: 1992
  end-page: 4187
  ident: CR42
  article-title: Solitons in a nonlinear model medium
  publication-title: J. Phys. A
– volume: 111
  start-page: 20275
  year: 2023
  end-page: 20288
  ident: CR20
  article-title: Higher-order rogue waves and dispersive solitons of a novel P-type (3+1)-D evolution equation in soliton theory and nonlinear waves
  publication-title: Nonlinear Dyn.
– volume: 105
  year: 2022
  ident: CR29
  publication-title: Phys. Rev. A
– volume: 89
  year: 2014
  ident: 1002_CR28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.063814
– volume: 30
  start-page: 535
  year: 2023
  ident: 1002_CR11
  publication-title: Arab J. Basic Appl. Sci.
  doi: 10.1080/25765299.2023.2256049
– volume: 131
  year: 2022
  ident: 1002_CR41
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0080508
– volume: 19
  year: 2020
  ident: 1002_CR7
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103329
– volume: 366
  start-page: 27
  year: 2018
  ident: 1002_CR17
  publication-title: Physica D
  doi: 10.1016/j.physd.2017.11.001
– volume: 6
  start-page: 84
  year: 2012
  ident: 1002_CR27
  publication-title: Nat. Photonic
  doi: 10.1038/nphoton.2011.345
– volume: 12
  start-page: 1427
  year: 1999
  ident: 1002_CR43
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/12/5/314
– volume: 20
  start-page: 1059
  year: 2004
  ident: 1002_CR47
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2003.09.043
– volume: 21
  start-page: 158
  year: 2022
  ident: 1002_CR32
  publication-title: Qual. Theor. Dyn. Syst.
  doi: 10.1007/s12346-022-00689-5
– volume: 523
  start-page: 61
  year: 2013
  ident: 1002_CR37
  publication-title: Phys. Rep. Rev. Sec. Phys. Lett.
– volume: 13
  start-page: 1819
  year: 2002
  ident: 1002_CR44
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(01)00200-4
– volume: 32
  start-page: 1850317
  year: 2018
  ident: 1002_CR5
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984918503177
– volume: 55
  start-page: 588
  year: 2023
  ident: 1002_CR16
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-023-04866-x
– volume: 119
  year: 2023
  ident: 1002_CR35
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2023.107117
– ident: 1002_CR26
  doi: 10.1103/PhysRevE.67.046610
– volume: 105
  year: 2022
  ident: 1002_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.053525
– volume: 52
  start-page: 1498
  year: 1974
  ident: 1002_CR55
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.52.1498
– volume: 18
  start-page: 7625
  year: 2010
  ident: 1002_CR38
  publication-title: Opt. Express
  doi: 10.1364/OE.18.007625
– volume: 100
  start-page: 3745
  year: 2020
  ident: 1002_CR31
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05695-3
– volume: 102
  start-page: 1787
  year: 2020
  ident: 1002_CR54
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06024-4
– volume: 111
  start-page: 3633
  year: 2023
  ident: 1002_CR52
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07984-5
– volume: 111
  start-page: 9457
  year: 2023
  ident: 1002_CR10
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08319-8
– volume: 39
  year: 2022
  ident: 1002_CR50
  publication-title: Results Phys.
– volume: 399
  start-page: 173
  year: 2019
  ident: 1002_CR48
  publication-title: Physica D
  doi: 10.1016/j.physd.2019.05.008
– volume: 96
  start-page: 12
  year: 2021
  ident: 1002_CR23
  publication-title: Phys. Scr.
– volume: 82
  year: 2010
  ident: 1002_CR53
  publication-title: Phys. Scr.
– volume: 36
  year: 2022
  ident: 1002_CR18
  publication-title: Results Phys.
– volume: 31
  year: 2022
  ident: 1002_CR34
  publication-title: Chin. Phys. B
– volume: 159
  year: 2022
  ident: 1002_CR25
  publication-title: Chaos Soliton Fract.
– volume: 3
  start-page: 77
  year: 2014
  ident: 1002_CR15
  publication-title: J. Adv. Phys.
  doi: 10.1166/jap.2014.1104
– volume: 21
  start-page: 231
  year: 2004
  ident: 1002_CR33
  publication-title: Chaos Soliton Fract.
  doi: 10.1016/j.chaos.2003.10.014
– volume: 34
  year: 2022
  ident: 1002_CR13
  publication-title: J. King Saud Univ. Sci.
– volume: 55
  start-page: 703
  year: 2023
  ident: 1002_CR24
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-023-04912-8
– volume: 111
  start-page: 22457
  year: 2023
  ident: 1002_CR19
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-09012-6
– volume: 111
  start-page: 4683
  year: 2023
  ident: 1002_CR4
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-08087-x
– volume: 19
  year: 2020
  ident: 1002_CR6
  publication-title: Results Phys.
– volume: 17
  start-page: 683
  year: 2003
  ident: 1002_CR46
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(02)00483-6
– volume: 75
  start-page: 109
  year: 2023
  ident: 1002_CR1
  publication-title: Rom. Rep. Phys.
– volume: 111
  start-page: 16395
  year: 2023
  ident: 1002_CR22
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08683-5
– volume: 39
  year: 2022
  ident: 1002_CR12
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2022.105755
– volume: 451
  year: 2023
  ident: 1002_CR51
  publication-title: Physica D
– volume: 25
  start-page: 4181
  year: 1992
  ident: 1002_CR42
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/25/15/025
– volume: 75
  start-page: 108
  year: 2023
  ident: 1002_CR2
  publication-title: Rom. Rep. Phys.
– volume: 2022
  start-page: 2573
  year: 2022
  ident: 1002_CR49
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07315-8
– volume: 16
  start-page: 13
  year: 2003
  ident: 1002_CR45
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(02)00314-4
– volume: 100
  start-page: 1551
  year: 2020
  ident: 1002_CR30
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05570-1
– volume: 85
  start-page: 844
  year: 2000
  ident: 1002_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.844
– volume: 98
  year: 2023
  ident: 1002_CR21
  publication-title: Phys. Scr.
– volume: 488
  year: 2023
  ident: 1002_CR3
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2023.129134
– volume: 520
  start-page: 205
  year: 2015
  ident: 1002_CR40
  publication-title: Nature
  doi: 10.1038/nature14341
– volume: 37
  year: 2021
  ident: 1002_CR8
  publication-title: Commun. Theor. Phys.
– volume: 28
  start-page: A11
  year: 2011
  ident: 1002_CR39
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.28.000A11
– volume: 7
  start-page: 426
  year: 2023
  ident: 1002_CR9
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract7060426
– ident: 1002_CR14
  doi: 10.21203/rs.3.rs-3210751/v1
– volume: 111
  start-page: 20275
  year: 2023
  ident: 1002_CR20
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08938-1
SSID ssj0062732
Score 2.392403
Snippet Vakhnenko-type equations play a critical role in nonlinear electromagnetic and optical fiber applications. In this article, we present a new advancement in...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Difference and Functional Equations
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Original Paper
Title The Dynamics on Soliton Molecules and Soliton Bifurcation for an Extended Generalization of Vakhnenko Equation
URI https://link.springer.com/article/10.1007/s12346-024-01002-2
Volume 23
WOSCitedRecordID wos001184312600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1662-3592
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062732
  issn: 1575-5460
  databaseCode: RSV
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPejBb3F-kYM3LaxJmrZHPyYe3BCnY7eS5QPHJNV18-_3pU03BjLQU6F9KeV9N3nv9xC6FIQYIyj8lnClA6aUCgTjKuBJFDOpY6ZLSKH-U9ztJoNB-uybwoq62r0-kiw99aLZjVDmCmZd1YSzY3C86xDuEmeOL71-7X85BOTyjBMSkSBivOVbZX5_x3I4Wj4LLUPMw87_Pm4XbfuUEt9UOrCH1rTdR1udOR5rcYAsaAO-r4bPFzi3uOfK3uDaqabj6gILq-Z3b0dmNqn28jAktfAMt_1mOfY41b59E-cG98X43Wo7znH7qwIOP0RvD-3Xu8fAT1oIJEnDaTA0EZOSE5kq5uBsWJoooyQTLU254bGkEvIyRjVXIPEo1AIcQWzMUGshWKjoEWrY3OpjhJOhgCyQCBZRw4RMk6hlhuA0iCA6pMY0UVgzPJMehtxNw_jIFgDKjpcZ8DIreZmRJrqar_msQDhWUl_XMsq8QRYryE_-Rn6KNkkpZlexe4Ya08lMn6MN-T0dFZOLUhN_AGlq2Lc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBfXBb3F-5sE3LaxJmraPfmxM3Ia4OfZWsnzgmKS6bv79Jm26MZCBPhXaSyl3l7tr7u53AFwzhJRi2PyWUCE9IoTwGKHCo1EQEi5DInNIoX4r7HSiwSB-cU1hWVntXqYkc0u9aHZDmNiCWVs1YfexMbzrxHgsW8j32u2X9pcah5znOE0g4gWE1lyrzO_vWHZHy7nQ3MU0dv_3cXtgx4WU8K7QgX2wJvUB2G7P8VizQ6CNNsDHYvh8BlMNu7bszVzbxXRcmUGmxfzu_UjNJsVZHjRBrXkG6-6wHDqcate-CVMF-2z8rqUep7D-VQCHH4G3Rr330PTcpAWPo9ifekMVEM4p4rEgFs6GxJFQghNWk5gqGnLMTVxGsKTCSDzwJTOGIFRqKCVjxBf4GFR0quUJgNGQmSgQMRJgRRiPo6CmhsZoIIakj5WqAr9keMIdDLmdhvGRLACULS8Tw8sk52WCquBmvuazAOFYSX1byihxGzJbQX76N_IrsNnstVtJ66nzfAa2UC5yW717DirTyUxegA3-PR1lk8tcK38Amw3bmw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIvrgtzg_8-Cblq1pmraP6jYUtzGYjr2VLB84JulcO_9-kzbdHMhAfCq01xAul7tL7u53ANxQhKSknj6WEC4czDl3KCbcIaEfYCYCLHJIoX4r6HTCwSDq_qjiz7Pdy5BkUdNgUJpUVp1wWV0UviEPm-RZk0Fh9rRWwhvYNA0y5_Vev9TFRBvnPN6pnRLHx6Rmy2Z-H2PZNC3HRXNz09z7_0T3wa51NeF9IRsHYE2oQ7DTnuO0pkdAaSmB9aIpfQoTBXsmHU4_20XXXJFCqvj87cNIzqbFHR_Uzq7-Bhv2Eh1a_Gpb1gkTCft0_K6EGiew8VkAih-Dt2bj9fHJsR0YHIYiN3OG0seMEcQijg3MDY5CLjnDtCY8IknAPKb9NewJwrUk-K6gWkEEUg6FoBS73DsB6ypR4hTAcEi1d4go9j2JKYtCvyaHWpkgioTrSVkBbsn8mFl4ctMl4yNeACsbXsaal3HOyxhVwO38n0kBzrGS-q5cr9hu1HQF-dnfyK_BVrfejFvPnZdzsI3yFTdJvRdgPZvOxCXYZF_ZKJ1e5QL6DX0K5H8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Dynamics+on+Soliton+Molecules+and+Soliton+Bifurcation+for+an+Extended+Generalization+of+Vakhnenko+Equation&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=Ma%2C+Yu-Lan&rft.au=Li%2C+Bang-Qing&rft.date=2024-07-01&rft.pub=Springer+International+Publishing&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1007%2Fs12346-024-01002-2&rft.externalDocID=10_1007_s12346_024_01002_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon