KNODE-MPC: A Knowledge-Based Data-Driven Predictive Control Framework for Aerial Robots

In this letter, we consider the problem of deriving and incorporating accurate dynamic models for model predictive control (MPC) with an application to quadrotor control. MPC relies on precise dynamic models to achieve the desired closed-loop performance. However, the presence of uncertainties in co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 7; H. 2; S. 2819 - 2826
Hauptverfasser: Chee, Kong Yao, Jiahao, Tom Z., Hsieh, M. Ani
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this letter, we consider the problem of deriving and incorporating accurate dynamic models for model predictive control (MPC) with an application to quadrotor control. MPC relies on precise dynamic models to achieve the desired closed-loop performance. However, the presence of uncertainties in complex systems and the environments they operate in poses a challenge in obtaining sufficiently accurate representations of the system dynamics. In this letter, we make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles. The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data. Using a quadrotor, we benchmark our hybrid model against a state-of-the-art Gaussian Process (GP) model and show that the hybrid model provides more accurate predictions of the quadrotor dynamics and is able to generalize beyond the training data. To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC. Results show that the integrated framework achieves 60.2% improvement in simulations and more than 21% in physical experiments, in terms of trajectory tracking performance.
AbstractList In this letter, we consider the problem of deriving and incorporating accurate dynamic models for model predictive control (MPC) with an application to quadrotor control. MPC relies on precise dynamic models to achieve the desired closed-loop performance. However, the presence of uncertainties in complex systems and the environments they operate in poses a challenge in obtaining sufficiently accurate representations of the system dynamics. In this letter, we make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles. The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data. Using a quadrotor, we benchmark our hybrid model against a state-of-the-art Gaussian Process (GP) model and show that the hybrid model provides more accurate predictions of the quadrotor dynamics and is able to generalize beyond the training data. To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC. Results show that the integrated framework achieves 60.2% improvement in simulations and more than 21% in physical experiments, in terms of trajectory tracking performance.
Author Jiahao, Tom Z.
Hsieh, M. Ani
Chee, Kong Yao
Author_xml – sequence: 1
  givenname: Kong Yao
  orcidid: 0000-0002-1808-3807
  surname: Chee
  fullname: Chee, Kong Yao
  email: ckongyao@seas.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Tom Z.
  orcidid: 0000-0001-6645-6068
  surname: Jiahao
  fullname: Jiahao, Tom Z.
  email: zjh@seas.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: M. Ani
  orcidid: 0000-0003-2186-9074
  surname: Hsieh
  fullname: Hsieh, M. Ani
  email: m.hsieh@seas.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
BookMark eNp9kE1Lw0AQhhdRsNbeBS8LnlP3K7uJt9gPlVZbiuIxbDYTSU2zdbO1-O9NaRHx4Gnew_vMMM8ZOq5tDQhdUNKnlMTX00XSZ4SxPqdCqEgdoQ7jSgVcSXn8K5-iXtMsCSE0ZIrHYQe9Tp5mw1HwOB_c4ARParutIH-D4FY3kOOh9joYuvITajx3kJfGtxkPbO2drfDY6RVsrXvHhXU4AVfqCi9sZn1zjk4KXTXQO8wuehmPngf3wXR29zBIpoFhMfVBBgXnpogLUJmIlBSh1nmURSZkcURZriRELDSa5kZkIc-NUlqA5JwIrgQB3kVX-71rZz820Ph0aTeubk-mTDKhQhkS1bbkvmWcbRoHRWpKr325-0OXVUpJuvOYth7Tncf04LEFyR9w7cqVdl__IZd7pASAn3osY6pixb8Bsex9mQ
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_conengprac_2025_106587
crossref_primary_10_1177_09544070221127785
crossref_primary_10_1038_s41598_024_51822_0
crossref_primary_10_1109_LRA_2025_3573624
crossref_primary_10_1007_s13042_023_02095_y
crossref_primary_10_1080_0951192X_2022_2128219
crossref_primary_10_1016_j_ast_2025_110045
crossref_primary_10_1109_LRA_2025_3592067
crossref_primary_10_1109_TNNLS_2024_3445976
crossref_primary_10_3390_drones9010071
crossref_primary_10_1016_j_conengprac_2025_106479
crossref_primary_10_1016_j_precisioneng_2024_03_003
crossref_primary_10_1002_oca_3287
crossref_primary_10_1002_rob_22346
crossref_primary_10_1016_j_conengprac_2024_106015
crossref_primary_10_1098_rsta_2024_0228
crossref_primary_10_1109_LRA_2025_3607272
crossref_primary_10_1002_oca_3207
crossref_primary_10_1109_TCST_2024_3521182
crossref_primary_10_1109_TNNLS_2024_3525264
crossref_primary_10_1109_TRO_2024_3381554
crossref_primary_10_1109_LRA_2024_3484182
crossref_primary_10_1109_TCYB_2024_3413072
crossref_primary_10_1109_TRO_2023_3326350
crossref_primary_10_1109_LRA_2023_3337701
crossref_primary_10_1109_TRO_2025_3567491
crossref_primary_10_1109_TCYB_2025_3536606
crossref_primary_10_3390_app12094764
crossref_primary_10_1007_s40435_025_01786_4
crossref_primary_10_1109_LRA_2023_3246839
crossref_primary_10_1109_TITS_2024_3374796
crossref_primary_10_1109_LRA_2024_3350982
Cites_doi 10.1007/s12532-018-0139-4
10.1007/BFb0109870
10.1109/ACC.2014.6858851
10.1109/LRA.2019.2930489
10.1109/IROS.2018.8593995
10.1073/pnas.1906995116
10.1002/rnc.1758
10.1063/1.5133386
10.1016/j.physd.2020.132736
10.1017/9781139061759
10.15607/RSS.2021.XVII.042
10.1063/5.0005541
10.1109/MCS.2016.2602087
10.1109/LRA.2019.2926677
10.1109/LRA.2021.3061307
10.1109/ICRA.2011.5980409
10.1073/pnas.1517384113
10.1098/rspa.2018.0335
10.1063/5.0065617
10.1016/S0967-0661(02)00186-7
10.1109/ICRA.2017.7989202
10.1137/S1064827501380630
10.1109/TASSP.1978.1163055
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2022.3144787
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 2826
ExternalDocumentID 10_1109_LRA_2022_3144787
9691797
Genre orig-research
GrantInformation_xml – fundername: NSF IIS
  grantid: 1910308
– fundername: DSO National Laboratories
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-bef33cf9fe7b487645aad8b8c529812d76e825ca1dc4b53dc77a4e633043740e3
IEDL.DBID RIE
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000750158000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Nov 09 07:56:13 EST 2025
Tue Nov 18 19:37:57 EST 2025
Sat Nov 29 06:03:14 EST 2025
Wed Aug 27 03:00:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-bef33cf9fe7b487645aad8b8c529812d76e825ca1dc4b53dc77a4e633043740e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6645-6068
0000-0002-1808-3807
0000-0003-2186-9074
PQID 2624756507
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_LRA_2022_3144787
ieee_primary_9691797
crossref_primary_10_1109_LRA_2022_3144787
proquest_journals_2624756507
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
Kingma (ref22) 2015
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Pedregosa (ref28) 2011; 12
Chen (ref12) 2018
Pfrommer (ref9) 2020; 155
Tavenard (ref25) 2020; 21
ref24
ref23
Hnig (ref30) 2017
ref26
ref20
ref21
Bitcraze (ref29)
ref27
ref8
ref7
ref4
ref3
ref6
ref5
References_xml – ident: ref26
  doi: 10.1007/s12532-018-0139-4
– ident: ref18
  doi: 10.1007/BFb0109870
– ident: ref21
  doi: 10.1109/ACC.2014.6858851
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref28
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– ident: ref16
  doi: 10.1109/LRA.2019.2930489
– ident: ref8
  doi: 10.1109/IROS.2018.8593995
– ident: ref6
  doi: 10.1073/pnas.1906995116
– ident: ref19
  doi: 10.1002/rnc.1758
– ident: ref5
  doi: 10.1063/1.5133386
– ident: ref10
  doi: 10.1016/j.physd.2020.132736
– ident: ref2
  doi: 10.1017/9781139061759
– ident: ref29
  article-title: Crazyflie 2.1
– ident: ref27
  doi: 10.15607/RSS.2021.XVII.042
– ident: ref11
  doi: 10.1063/5.0005541
– ident: ref20
  doi: 10.1109/MCS.2016.2602087
– start-page: 6571
  volume-title: Adv. Neural Inf. Process. Syst
  year: 2018
  ident: ref12
  article-title: Neural ordinary differential equations
– ident: ref13
  doi: 10.1109/LRA.2019.2926677
– volume: 21
  start-page: 1
  issue: 118
  volume-title: J. Mach. Learn. Res.
  year: 2020
  ident: ref25
  article-title: Tslearn, a machine learning toolkit for time series data
– ident: ref14
  doi: 10.1109/LRA.2021.3061307
– ident: ref17
  doi: 10.1109/ICRA.2011.5980409
– ident: ref4
  doi: 10.1073/pnas.1517384113
– ident: ref7
  doi: 10.1098/rspa.2018.0335
– start-page: 83
  volume-title: Flying Multiple UAVs Using ROS
  year: 2017
  ident: ref30
– ident: ref3
  doi: 10.1063/5.0065617
– volume-title: Int. Conf. Learning Representations
  year: 2015
  ident: ref22
  article-title: Adam: A method for stochastic optimization
– ident: ref1
  doi: 10.1016/S0967-0661(02)00186-7
– ident: ref15
  doi: 10.1109/ICRA.2017.7989202
– ident: ref23
  doi: 10.1137/S1064827501380630
– ident: ref24
  doi: 10.1109/TASSP.1978.1163055
– volume: 155
  start-page: 2279
  volume-title: Conf. Robot Learning
  year: 2020
  ident: ref9
  article-title: ContactNets: Learning discontinuous contact dynamics with smooth, implicit representations
SSID ssj0001527395
Score 2.5071404
Snippet In this letter, we consider the problem of deriving and incorporating accurate dynamic models for model predictive control (MPC) with an application to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2819
SubjectTerms Aerodynamics
Complex systems
Computational modeling
Data models
Differential equations
Dynamic models
First principles
Gaussian process
Machine learning for robot control
Mathematical models
model learning for control
model predictive control
Neural networks
Ordinary differential equations
Predictive control
Predictive models
Robot control
System dynamics
Uncertainty
Title KNODE-MPC: A Knowledge-Based Data-Driven Predictive Control Framework for Aerial Robots
URI https://ieeexplore.ieee.org/document/9691797
https://www.proquest.com/docview/2624756507
Volume 7
WOSCitedRecordID wos000750158000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6seNCDryrWR8nBi2DsusluNt5qHwhqLUWxt2WTzIIgrbSrR3-7yT6qogjeckhCmElm5puZzAAcpwyVikJDtQqQcsGlfVIpp6lVVkyqFJmK8mYTYjCIxmM5XILTxV8YRMyTz_DMDfNYvpnqV-cqa8nQggspalATQhR_tT79Ka6SmAyqSKQnWzejtsV_vm9hKXclaL5pnryVyg_5myuV_sb_jrMJ66XxSNoFt7dgCSfbsPalpGAdHq8Hd90evR12LkibXFceM3pptZUh3SRLaHfmJBwZzlyMxkk70iny1Um_ytQi1pQl7fxyktFUTbP5Djz0e_edK1o2T6Dal-cZVZgyplOZolAWlIQ8SBITqUgHvrRK3YgQLTjUybnRXAXMaCESjqFzbzDBPWS7sDyZTnAPiNERCqYFeopxplAyDJJIedoae0Zp04BWRdhYl5XFXYOL5zhHGJ6MLStix4q4ZEUDThYrXoqqGn_MrTvSL-aVVG_AYcW7uHx289gPfS6sieqJ_d9XHcCq27tIvTmE5Wz2ikewot-yp_msCbXb914zv1cfe5_LBw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdZnDl4EY7eb7GbjrbYWpbUWUfS2bJJZEKSVdvX3m-yjKorgLYeEhJlkZr6ZyQzAccpQqSg0VKsAKRdc2ieVcppaZcWkSpGpKG82Ifr96OlJDmbgdPoXBhHz5DM8c8M8lm9G-s25yuoytOBCilmYDzj3G8VvrU-PiqslJoMqFunJeu-uaRGg71tgyl0Rmm-6J2-m8kMC52qls_q_A63BSmk-kmbB73WYweEGLH8pKrgJj93-bfuS3gxa56RJupXPjF5YfWVIO8kS2h47GUcGYxelcfKOtIqMddKpcrWINWZJM7-e5G6kRtlkCx46l_etK1q2T6Dal42MKkwZ06lMUSgLS0IeJImJVKQDX1q1bkSIFh7qpGE0VwEzWoiEY-gcHExwD9k2zA1HQ9wBYnSEgmmBnmKcKZQMgyRSnrbmnlHa1KBeETbWZW1x1-LiJc4xhidjy4rYsSIuWVGDk-mK16Kuxh9zNx3pp_NKqtdgv-JdXD68SeyHPhfWSPXE7u-rjmDx6v6mF_eu-909WHL7FIk4-zCXjd_wABb0e_Y8GR_mt-sDZhvNHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KNODE-MPC%3A+A+Knowledge-Based+Data-Driven+Predictive+Control+Framework+for+Aerial+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Kong%2C+Yao+Chee&rft.au=Jiahao%2C+Tom+Z&rft.au=M+Ani+Hsieh&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=7&rft.issue=2&rft.spage=2819&rft_id=info:doi/10.1109%2FLRA.2022.3144787&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon