Design of Intelligent Connected Cruise Control With Vehicle-to-Vehicle Communication Delays

Connected cruise control (CCC) refers to a type of advanced driver assistance system combined with wireless vehicle-to-vehicle (V2V) communication technology to improve control stability and driving safety. However, it is urgent to investigate intelligent control algorithms to improve the adaptabili...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology Vol. 71; no. 8; pp. 9011 - 9025
Main Authors: Wang, Zhuwei, Jin, Senfan, Liu, Lihan, Fang, Chao, Li, Meng, Guo, Song
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9545, 1939-9359
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Connected cruise control (CCC) refers to a type of advanced driver assistance system combined with wireless vehicle-to-vehicle (V2V) communication technology to improve control stability and driving safety. However, it is urgent to investigate intelligent control algorithms to improve the adaptability of CCC in complex traffic environment. In addition, the effect of communication delays attributed to shared wireless communications on the performance degradation of the intelligent CCC design cannot be ignored. In this study, the design of deep reinforcement learning (DRL) controller for CCC system in high-dynamic traffic scenarios is investigated, which considers both time-varying leading velocity and communication delays. To be more specific, an intelligent CCC algorithm based on deep deterministic policy gradient (DDPG) is developed. According to the training samples obtained from interacting with the traffic environment, the actor network and the critic network are trained to maximize the quadratic reward function determined by state errors and control inputs for generating intelligent control strategies. In particular, the effect of previous control strategies is considered in vehicle dynamics analysis, optimization problem formulation and Markov decision process (MDP) definition to compensate the performance degradation attributed to communication delays. Lastly, the effectiveness and convergence of the proposed DRL-based CCC controller are verified through numerical simulations with various conditions. The superior performance of the proposed algorithm is shown by comparing with existing traditional algorithms and state-of-the-art DRL algorithms.
AbstractList Connected cruise control (CCC) refers to a type of advanced driver assistance system combined with wireless vehicle-to-vehicle (V2V) communication technology to improve control stability and driving safety. However, it is urgent to investigate intelligent control algorithms to improve the adaptability of CCC in complex traffic environment. In addition, the effect of communication delays attributed to shared wireless communications on the performance degradation of the intelligent CCC design cannot be ignored. In this study, the design of deep reinforcement learning (DRL) controller for CCC system in high-dynamic traffic scenarios is investigated, which considers both time-varying leading velocity and communication delays. To be more specific, an intelligent CCC algorithm based on deep deterministic policy gradient (DDPG) is developed. According to the training samples obtained from interacting with the traffic environment, the actor network and the critic network are trained to maximize the quadratic reward function determined by state errors and control inputs for generating intelligent control strategies. In particular, the effect of previous control strategies is considered in vehicle dynamics analysis, optimization problem formulation and Markov decision process (MDP) definition to compensate the performance degradation attributed to communication delays. Lastly, the effectiveness and convergence of the proposed DRL-based CCC controller are verified through numerical simulations with various conditions. The superior performance of the proposed algorithm is shown by comparing with existing traditional algorithms and state-of-the-art DRL algorithms.
Author Jin, Senfan
Liu, Lihan
Wang, Zhuwei
Fang, Chao
Guo, Song
Li, Meng
Author_xml – sequence: 1
  givenname: Zhuwei
  orcidid: 0000-0002-2880-3329
  surname: Wang
  fullname: Wang, Zhuwei
  email: wangzhuwei@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 2
  givenname: Senfan
  orcidid: 0000-0002-4233-8531
  surname: Jin
  fullname: Jin, Senfan
  email: jinsenfan@emails.bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 3
  givenname: Lihan
  orcidid: 0000-0002-0689-2332
  surname: Liu
  fullname: Liu, Lihan
  email: liulihan@bwu.edu.cn
  organization: School of Information, Beijing Wuzi University, Beijing, China
– sequence: 4
  givenname: Chao
  orcidid: 0000-0002-7611-4077
  surname: Fang
  fullname: Fang, Chao
  email: fangchao@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 5
  givenname: Meng
  orcidid: 0000-0002-5576-9883
  surname: Li
  fullname: Li, Meng
  email: limeng720@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 6
  givenname: Song
  orcidid: 0000-0001-9831-2202
  surname: Guo
  fullname: Guo, Song
  email: song.guo@polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong
BookMark eNp9UD1PwzAQtVCRaAs7Eksk5hR_xHE9opRCpUospQwMVuJeWlepXWxn6L8n_RADA9Pdu3vvnu4NUM86CwjdEzwiBMunxXIxopjSESNCYDy-Qn0imUwl47KH-hiTcSp5xm_QIIRtB7NMkj76mkAwa5u4OpnZCE1j1mBjUjhrQUdYJYVvTYDjIHrXJJ8mbpIlbIxuII0uvbTdfrdrrdFlNM4mE2jKQ7hF13XZBLi71CH6mL4sird0_v46K57nqaaSxLQChoXWEuuM1IziDAvGdS2rEyjzlaiqSud1JXLOeSZEmfOaEcwhoyxfaTZEj-e7e---WwhRbV3rbWepqMCMMMrGtGPhM0t7F4KHWu292ZX-oAhWxwhVF6E6RqguEXaS_I9Em3j6MPrSNP8JH85CAwC_PlIIKTlnP_0tf_g
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_TITS_2024_3455383
crossref_primary_10_1109_COMST_2024_3393369
crossref_primary_10_3390_s24123948
crossref_primary_10_1109_TITS_2024_3435036
crossref_primary_10_1109_TVT_2024_3415660
crossref_primary_10_3390_s23177576
crossref_primary_10_1109_TVT_2023_3306939
crossref_primary_10_1109_TASE_2023_3345369
crossref_primary_10_1109_TITS_2025_3560278
crossref_primary_10_1109_TVT_2024_3403485
crossref_primary_10_1177_09544070241240037
crossref_primary_10_1007_s42154_023_00228_1
crossref_primary_10_1088_1402_4896_adbb31
crossref_primary_10_1007_s44443_025_00204_1
crossref_primary_10_1109_TVT_2024_3395637
crossref_primary_10_3390_sym15051089
crossref_primary_10_1177_03611981221144283
crossref_primary_10_1177_09596518241236980
crossref_primary_10_1016_j_vehcom_2023_100655
crossref_primary_10_1109_TIV_2024_3368025
crossref_primary_10_1109_TIM_2025_3597677
crossref_primary_10_1371_journal_pone_0312854
crossref_primary_10_1109_TITS_2024_3435952
crossref_primary_10_1016_j_trc_2025_105062
crossref_primary_10_1016_j_heliyon_2024_e30697
Cites_doi 10.1109/TCST.2018.2811376
10.1109/TITS.2017.2754240
10.1109/CDC45484.2021.9683257
10.3182/20140824-6-ZA-1003.02042
10.1109/TCST.2016.2572603
10.1103/PhysRev.36.823
10.1177/0959651818766224
10.1007/978-3-642-27645-3
10.1109/TITS.2011.2157145
10.1016/j.trc.2007.12.004
10.1109/TITS.2016.2597279
10.1109/SMC.2019.8914621
10.1109/TWC.2019.2919280
10.1177/1729881419853185
10.1109/CDC40024.2019.9030110
10.1109/IVS.2019.8814124
10.1109/TITS.2013.2291493
10.3141/2489-17
10.1109/TITS.2021.3054625
10.1109/TITS.2003.821292
10.32657/10356/90191
10.1109/TVT.2019.2960114
10.1109/TITS.2013.2278494
10.1109/TIE.2009.2035462
10.1080/00423114.2016.1193209
10.1109/ITSC.2019.8917387
10.1109/TCOMM.2019.2931583
10.1109/ITSC.2018.8569977
10.1016/j.trc.2018.07.021
10.1109/TITS.2016.2633164
10.1109/JSYST.2019.2933001
10.1109/TITS.2015.2483063
10.1109/TVT.2020.3040321
10.1109/TVT.2014.2369522
10.1109/TITS.2017.2660544
10.1109/COMST.2018.2888904
10.1109/ACC.2014.6859490
10.1109/TITS.2016.2574246
10.1109/COMST.2014.2339817
10.2352/ISSN.2470-1173.2017.19.AVM-023
10.1109/ITSC.2019.8917306
10.1109/TWC.2016.2613078
10.1609/aaai.v32i1.11694
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2022.3177008
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 9025
ExternalDocumentID 10_1109_TVT_2022_3177008
9779955
Genre orig-research
GrantInformation_xml – fundername: Beijing Nova Program of Science and Technology
  grantid: Z191100001119094
– fundername: Beijing Natural Science Foundation
  grantid: 4222002; L202016; L211002
  funderid: 10.13039/501100004826
– fundername: Foundation of Beijing Municipal Commission of Education
  grantid: KM201910005026; KM202110005021
– fundername: National Natural Science Foundation of China
  grantid: 61901011; 62001011
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-be307cc90c41f32040735cf9bf3204a6d7bbbc6fb76555477a65f3105e4236dc3
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846892800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:18:50 EDT 2025
Tue Nov 18 21:09:03 EST 2025
Sat Nov 29 02:59:02 EST 2025
Wed Aug 27 02:23:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-be307cc90c41f32040735cf9bf3204a6d7bbbc6fb76555477a65f3105e4236dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5576-9883
0000-0002-0689-2332
0000-0002-7611-4077
0000-0002-4233-8531
0000-0001-9831-2202
0000-0002-2880-3329
PQID 2703132382
PQPubID 85454
PageCount 15
ParticipantIDs crossref_primary_10_1109_TVT_2022_3177008
crossref_citationtrail_10_1109_TVT_2022_3177008
ieee_primary_9779955
proquest_journals_2703132382
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref32
ref2
Jin (ref23) 2018; 95
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Silver (ref36) 2014
Bouton (ref34) 2019
Jin (ref10) 2014; 4664
ref24
ref46
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Jin (ref21) 2014
ref40
References_xml – ident: ref15
  doi: 10.1109/TCST.2018.2811376
– ident: ref25
  doi: 10.1109/TITS.2017.2754240
– ident: ref43
  doi: 10.1109/CDC45484.2021.9683257
– ident: ref47
  doi: 10.3182/20140824-6-ZA-1003.02042
– ident: ref22
  doi: 10.1109/TCST.2016.2572603
– ident: ref45
  doi: 10.1103/PhysRev.36.823
– ident: ref24
  doi: 10.1177/0959651818766224
– ident: ref16
  doi: 10.1007/978-3-642-27645-3
– ident: ref32
  doi: 10.1109/TITS.2011.2157145
– year: 2019
  ident: ref34
  article-title: Reinforcement learning with probabilistic guarantees for autonomous driving
– ident: ref4
  doi: 10.1016/j.trc.2007.12.004
– ident: ref14
  doi: 10.1109/TITS.2016.2597279
– ident: ref35
  doi: 10.1109/SMC.2019.8914621
– ident: ref20
  doi: 10.1109/TWC.2019.2919280
– ident: ref33
  doi: 10.1177/1729881419853185
– ident: ref39
  doi: 10.1109/CDC40024.2019.9030110
– ident: ref42
  doi: 10.1109/IVS.2019.8814124
– ident: ref11
  doi: 10.1109/TITS.2013.2291493
– ident: ref7
  doi: 10.3141/2489-17
– ident: ref37
  doi: 10.1109/TITS.2021.3054625
– ident: ref3
  doi: 10.1109/TITS.2003.821292
– ident: ref44
  doi: 10.32657/10356/90191
– start-page: 387
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2014
  ident: ref36
  article-title: Deterministic policy gradient algorithms
– ident: ref19
  doi: 10.1109/TVT.2019.2960114
– ident: ref6
  doi: 10.1109/TITS.2013.2278494
– volume: 4664
  start-page: 46
  year: 2014
  ident: ref10
  article-title: Dynamics of connected vehicle systems with delayed acceleration feedback
  publication-title: Transp. Res. Part C: Emerg. Technol.
– ident: ref18
  doi: 10.1109/TIE.2009.2035462
– ident: ref9
  doi: 10.1080/00423114.2016.1193209
– ident: ref40
  doi: 10.1109/ITSC.2019.8917387
– start-page: 4107
  volume-title: Proc. 53rd IEEE Conf. Decis. Control
  year: 2014
  ident: ref21
  article-title: Optimal control of connected vehicle systems
– ident: ref30
  doi: 10.1109/TCOMM.2019.2931583
– ident: ref38
  doi: 10.1109/ITSC.2018.8569977
– volume: 95
  start-page: 445
  year: 2018
  ident: ref23
  article-title: Connected cruise control among human-driven vehicles: Experiment-based parameter estimation and optimal control design
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2018.07.021
– ident: ref26
  doi: 10.1109/TITS.2016.2633164
– ident: ref46
  doi: 10.1109/JSYST.2019.2933001
– ident: ref8
  doi: 10.1109/TITS.2015.2483063
– ident: ref29
  doi: 10.1109/TVT.2020.3040321
– ident: ref2
  doi: 10.1109/TVT.2014.2369522
– ident: ref13
  doi: 10.1109/TITS.2017.2660544
– ident: ref5
  doi: 10.1109/COMST.2018.2888904
– ident: ref27
  doi: 10.1109/ACC.2014.6859490
– ident: ref28
  doi: 10.1109/TITS.2016.2574246
– ident: ref1
  doi: 10.1109/COMST.2014.2339817
– ident: ref31
  doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023
– ident: ref41
  doi: 10.1109/ITSC.2019.8917306
– ident: ref12
  doi: 10.1109/TWC.2016.2613078
– ident: ref17
  doi: 10.1609/aaai.v32i1.11694
SSID ssj0014491
Score 2.511853
Snippet Connected cruise control (CCC) refers to a type of advanced driver assistance system combined with wireless vehicle-to-vehicle (V2V) communication technology...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9011
SubjectTerms Advanced driver assistance systems
Algorithms
Communication
Communication delays
connected cruise control
Control algorithms
Control stability
Controllers
Cruise control
Decision analysis
Delays
dynamic traffic
Heuristic algorithms
intelligent control algorithm
Machine learning
Markov processes
Optimal control
Optimization
Performance degradation
Real-time systems
Stability analysis
Vehicle dynamics
Vehicle safety
Wireless communications
Title Design of Intelligent Connected Cruise Control With Vehicle-to-Vehicle Communication Delays
URI https://ieeexplore.ieee.org/document/9779955
https://www.proquest.com/docview/2703132382
Volume 71
WOSCitedRecordID wos000846892800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOiUHL4J1_UrTHGVzKMjwMOfAQ0nTlA3GKmsn-N_7knZlogje0pKE8l5f83t9Hz-AK-EngaCxtBTXFGYJiy1uu8ISiE1TRmmYGDqg8RMbDsPJhD834KauhVFKmeQzdauHJpafZHKlf5V1EatwTukWbDHGylqtOmLg-xU7noMGjLBgHZK0eXc0HqEj6LronzJmayLJjSPIcKr8-BCb02Ww_7_nOoC9CkWSu1Lth9BQiyPY3egt2IK3vsnNIFlKHuu2mwUxiS0SYSbpLVezXOkbOledvM6KKRmrqd7QKjKrGpJvFSSkr-biMz-Gl8H9qPdgVUwKlnS5U1ixQlOWktvSd1LPRcNlHpUpj82FCFBFcSyDNGYBRXzBmAhoisCPKkRbQSK9E2gusoU6BRInnkAvJPVDBAZUeBwBgaNoEvpSKp_LNnTXwo1k1WZcs13MI-Nu2DxCdURaHVGljjZc1yveyxYbf8xtafHX8yrJt6Gz1l9U2WAeucz0pfRC9-z3Veewo_cu0_k60CyWK3UB2_KjmOXLS_N6fQEvA8ze
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBt1ife_AiGJvHbjZ7lNZSsRYPtQoewmazoYXSSpsK_ntnt2lQFMHbJuwmYSaT_Sbz-AAuJE1DyRLlaGEozFKeOML1pSMRm2acsSi1dEC9Nu90opcX8bgEV2UtjNbaJp_pazO0sfx0rGbmV1kNsYoQjC3DCqPU9-bVWmXMgNKCH89DE0ZgsAhKuqLW7XXRFfR99FA5dw2V5JdNyLKq_PgU2_2lufW_J9uGzQJHkpu54ndgSY92YeNLd8E9eG3Y7Awyzshd2XgzJza1RSHQJPXJbDDV5oTJVifPg7xPerpvLujkY6cYkm81JKShh_Jjug9PzdtuveUUXAqO8oWXO4lGY1ZKuIp6WeCj6fKAqUwk9kCGqKQkUWGW8JAhwuBchixD6Mc04q0wVcEBVEbjkT4EkqSBRD8koxFCAyYDgZDA0yyNqFKaClWF2kK4sSoajRu-i2FsHQ5XxKiO2KgjLtRRhctyxdu8ycYfc_eM-Mt5heSrcLLQX1xY4TT2ue1MGUT-0e-rzmGt1X1ox-27zv0xrJv7zJP7TqCST2b6FFbVez6YTs7sq_YJAQXQJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Intelligent+Connected+Cruise+Control+With+Vehicle-to-Vehicle+Communication+Delays&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Wang%2C+Zhuwei&rft.au=Jin%2C+Senfan&rft.au=Liu%2C+Lihan&rft.au=Fang%2C+Chao&rft.date=2022-08-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=8&rft.spage=9011&rft.epage=9025&rft_id=info:doi/10.1109%2FTVT.2022.3177008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2022_3177008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon