Design of Intelligent Connected Cruise Control With Vehicle-to-Vehicle Communication Delays
Connected cruise control (CCC) refers to a type of advanced driver assistance system combined with wireless vehicle-to-vehicle (V2V) communication technology to improve control stability and driving safety. However, it is urgent to investigate intelligent control algorithms to improve the adaptabili...
Saved in:
| Published in: | IEEE transactions on vehicular technology Vol. 71; no. 8; pp. 9011 - 9025 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Connected cruise control (CCC) refers to a type of advanced driver assistance system combined with wireless vehicle-to-vehicle (V2V) communication technology to improve control stability and driving safety. However, it is urgent to investigate intelligent control algorithms to improve the adaptability of CCC in complex traffic environment. In addition, the effect of communication delays attributed to shared wireless communications on the performance degradation of the intelligent CCC design cannot be ignored. In this study, the design of deep reinforcement learning (DRL) controller for CCC system in high-dynamic traffic scenarios is investigated, which considers both time-varying leading velocity and communication delays. To be more specific, an intelligent CCC algorithm based on deep deterministic policy gradient (DDPG) is developed. According to the training samples obtained from interacting with the traffic environment, the actor network and the critic network are trained to maximize the quadratic reward function determined by state errors and control inputs for generating intelligent control strategies. In particular, the effect of previous control strategies is considered in vehicle dynamics analysis, optimization problem formulation and Markov decision process (MDP) definition to compensate the performance degradation attributed to communication delays. Lastly, the effectiveness and convergence of the proposed DRL-based CCC controller are verified through numerical simulations with various conditions. The superior performance of the proposed algorithm is shown by comparing with existing traditional algorithms and state-of-the-art DRL algorithms. |
|---|---|
| AbstractList | Connected cruise control (CCC) refers to a type of advanced driver assistance system combined with wireless vehicle-to-vehicle (V2V) communication technology to improve control stability and driving safety. However, it is urgent to investigate intelligent control algorithms to improve the adaptability of CCC in complex traffic environment. In addition, the effect of communication delays attributed to shared wireless communications on the performance degradation of the intelligent CCC design cannot be ignored. In this study, the design of deep reinforcement learning (DRL) controller for CCC system in high-dynamic traffic scenarios is investigated, which considers both time-varying leading velocity and communication delays. To be more specific, an intelligent CCC algorithm based on deep deterministic policy gradient (DDPG) is developed. According to the training samples obtained from interacting with the traffic environment, the actor network and the critic network are trained to maximize the quadratic reward function determined by state errors and control inputs for generating intelligent control strategies. In particular, the effect of previous control strategies is considered in vehicle dynamics analysis, optimization problem formulation and Markov decision process (MDP) definition to compensate the performance degradation attributed to communication delays. Lastly, the effectiveness and convergence of the proposed DRL-based CCC controller are verified through numerical simulations with various conditions. The superior performance of the proposed algorithm is shown by comparing with existing traditional algorithms and state-of-the-art DRL algorithms. |
| Author | Jin, Senfan Liu, Lihan Wang, Zhuwei Fang, Chao Guo, Song Li, Meng |
| Author_xml | – sequence: 1 givenname: Zhuwei orcidid: 0000-0002-2880-3329 surname: Wang fullname: Wang, Zhuwei email: wangzhuwei@bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 2 givenname: Senfan orcidid: 0000-0002-4233-8531 surname: Jin fullname: Jin, Senfan email: jinsenfan@emails.bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 3 givenname: Lihan orcidid: 0000-0002-0689-2332 surname: Liu fullname: Liu, Lihan email: liulihan@bwu.edu.cn organization: School of Information, Beijing Wuzi University, Beijing, China – sequence: 4 givenname: Chao orcidid: 0000-0002-7611-4077 surname: Fang fullname: Fang, Chao email: fangchao@bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 5 givenname: Meng orcidid: 0000-0002-5576-9883 surname: Li fullname: Li, Meng email: limeng720@bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 6 givenname: Song orcidid: 0000-0001-9831-2202 surname: Guo fullname: Guo, Song email: song.guo@polyu.edu.hk organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong |
| BookMark | eNp9UD1PwzAQtVCRaAs7Eksk5hR_xHE9opRCpUospQwMVuJeWlepXWxn6L8n_RADA9Pdu3vvnu4NUM86CwjdEzwiBMunxXIxopjSESNCYDy-Qn0imUwl47KH-hiTcSp5xm_QIIRtB7NMkj76mkAwa5u4OpnZCE1j1mBjUjhrQUdYJYVvTYDjIHrXJJ8mbpIlbIxuII0uvbTdfrdrrdFlNM4mE2jKQ7hF13XZBLi71CH6mL4sird0_v46K57nqaaSxLQChoXWEuuM1IziDAvGdS2rEyjzlaiqSud1JXLOeSZEmfOaEcwhoyxfaTZEj-e7e---WwhRbV3rbWepqMCMMMrGtGPhM0t7F4KHWu292ZX-oAhWxwhVF6E6RqguEXaS_I9Em3j6MPrSNP8JH85CAwC_PlIIKTlnP_0tf_g |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1109_TITS_2024_3455383 crossref_primary_10_1109_COMST_2024_3393369 crossref_primary_10_3390_s24123948 crossref_primary_10_1109_TITS_2024_3435036 crossref_primary_10_1109_TVT_2024_3415660 crossref_primary_10_3390_s23177576 crossref_primary_10_1109_TVT_2023_3306939 crossref_primary_10_1109_TASE_2023_3345369 crossref_primary_10_1109_TITS_2025_3560278 crossref_primary_10_1109_TVT_2024_3403485 crossref_primary_10_1177_09544070241240037 crossref_primary_10_1007_s42154_023_00228_1 crossref_primary_10_1088_1402_4896_adbb31 crossref_primary_10_1007_s44443_025_00204_1 crossref_primary_10_1109_TVT_2024_3395637 crossref_primary_10_3390_sym15051089 crossref_primary_10_1177_03611981221144283 crossref_primary_10_1177_09596518241236980 crossref_primary_10_1016_j_vehcom_2023_100655 crossref_primary_10_1109_TIV_2024_3368025 crossref_primary_10_1109_TIM_2025_3597677 crossref_primary_10_1371_journal_pone_0312854 crossref_primary_10_1109_TITS_2024_3435952 crossref_primary_10_1016_j_trc_2025_105062 crossref_primary_10_1016_j_heliyon_2024_e30697 |
| Cites_doi | 10.1109/TCST.2018.2811376 10.1109/TITS.2017.2754240 10.1109/CDC45484.2021.9683257 10.3182/20140824-6-ZA-1003.02042 10.1109/TCST.2016.2572603 10.1103/PhysRev.36.823 10.1177/0959651818766224 10.1007/978-3-642-27645-3 10.1109/TITS.2011.2157145 10.1016/j.trc.2007.12.004 10.1109/TITS.2016.2597279 10.1109/SMC.2019.8914621 10.1109/TWC.2019.2919280 10.1177/1729881419853185 10.1109/CDC40024.2019.9030110 10.1109/IVS.2019.8814124 10.1109/TITS.2013.2291493 10.3141/2489-17 10.1109/TITS.2021.3054625 10.1109/TITS.2003.821292 10.32657/10356/90191 10.1109/TVT.2019.2960114 10.1109/TITS.2013.2278494 10.1109/TIE.2009.2035462 10.1080/00423114.2016.1193209 10.1109/ITSC.2019.8917387 10.1109/TCOMM.2019.2931583 10.1109/ITSC.2018.8569977 10.1016/j.trc.2018.07.021 10.1109/TITS.2016.2633164 10.1109/JSYST.2019.2933001 10.1109/TITS.2015.2483063 10.1109/TVT.2020.3040321 10.1109/TVT.2014.2369522 10.1109/TITS.2017.2660544 10.1109/COMST.2018.2888904 10.1109/ACC.2014.6859490 10.1109/TITS.2016.2574246 10.1109/COMST.2014.2339817 10.2352/ISSN.2470-1173.2017.19.AVM-023 10.1109/ITSC.2019.8917306 10.1109/TWC.2016.2613078 10.1609/aaai.v32i1.11694 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2022.3177008 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 9025 |
| ExternalDocumentID | 10_1109_TVT_2022_3177008 9779955 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Beijing Nova Program of Science and Technology grantid: Z191100001119094 – fundername: Beijing Natural Science Foundation grantid: 4222002; L202016; L211002 funderid: 10.13039/501100004826 – fundername: Foundation of Beijing Municipal Commission of Education grantid: KM201910005026; KM202110005021 – fundername: National Natural Science Foundation of China grantid: 61901011; 62001011 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-be307cc90c41f32040735cf9bf3204a6d7bbbc6fb76555477a65f3105e4236dc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846892800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:18:50 EDT 2025 Tue Nov 18 21:09:03 EST 2025 Sat Nov 29 02:59:02 EST 2025 Wed Aug 27 02:23:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-be307cc90c41f32040735cf9bf3204a6d7bbbc6fb76555477a65f3105e4236dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5576-9883 0000-0002-0689-2332 0000-0002-7611-4077 0000-0002-4233-8531 0000-0001-9831-2202 0000-0002-2880-3329 |
| PQID | 2703132382 |
| PQPubID | 85454 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TVT_2022_3177008 crossref_citationtrail_10_1109_TVT_2022_3177008 ieee_primary_9779955 proquest_journals_2703132382 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref32 ref2 Jin (ref23) 2018; 95 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Silver (ref36) 2014 Bouton (ref34) 2019 Jin (ref10) 2014; 4664 ref24 ref46 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Jin (ref21) 2014 ref40 |
| References_xml | – ident: ref15 doi: 10.1109/TCST.2018.2811376 – ident: ref25 doi: 10.1109/TITS.2017.2754240 – ident: ref43 doi: 10.1109/CDC45484.2021.9683257 – ident: ref47 doi: 10.3182/20140824-6-ZA-1003.02042 – ident: ref22 doi: 10.1109/TCST.2016.2572603 – ident: ref45 doi: 10.1103/PhysRev.36.823 – ident: ref24 doi: 10.1177/0959651818766224 – ident: ref16 doi: 10.1007/978-3-642-27645-3 – ident: ref32 doi: 10.1109/TITS.2011.2157145 – year: 2019 ident: ref34 article-title: Reinforcement learning with probabilistic guarantees for autonomous driving – ident: ref4 doi: 10.1016/j.trc.2007.12.004 – ident: ref14 doi: 10.1109/TITS.2016.2597279 – ident: ref35 doi: 10.1109/SMC.2019.8914621 – ident: ref20 doi: 10.1109/TWC.2019.2919280 – ident: ref33 doi: 10.1177/1729881419853185 – ident: ref39 doi: 10.1109/CDC40024.2019.9030110 – ident: ref42 doi: 10.1109/IVS.2019.8814124 – ident: ref11 doi: 10.1109/TITS.2013.2291493 – ident: ref7 doi: 10.3141/2489-17 – ident: ref37 doi: 10.1109/TITS.2021.3054625 – ident: ref3 doi: 10.1109/TITS.2003.821292 – ident: ref44 doi: 10.32657/10356/90191 – start-page: 387 volume-title: Proc. Int. Conf. Mach. Learn. year: 2014 ident: ref36 article-title: Deterministic policy gradient algorithms – ident: ref19 doi: 10.1109/TVT.2019.2960114 – ident: ref6 doi: 10.1109/TITS.2013.2278494 – volume: 4664 start-page: 46 year: 2014 ident: ref10 article-title: Dynamics of connected vehicle systems with delayed acceleration feedback publication-title: Transp. Res. Part C: Emerg. Technol. – ident: ref18 doi: 10.1109/TIE.2009.2035462 – ident: ref9 doi: 10.1080/00423114.2016.1193209 – ident: ref40 doi: 10.1109/ITSC.2019.8917387 – start-page: 4107 volume-title: Proc. 53rd IEEE Conf. Decis. Control year: 2014 ident: ref21 article-title: Optimal control of connected vehicle systems – ident: ref30 doi: 10.1109/TCOMM.2019.2931583 – ident: ref38 doi: 10.1109/ITSC.2018.8569977 – volume: 95 start-page: 445 year: 2018 ident: ref23 article-title: Connected cruise control among human-driven vehicles: Experiment-based parameter estimation and optimal control design publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2018.07.021 – ident: ref26 doi: 10.1109/TITS.2016.2633164 – ident: ref46 doi: 10.1109/JSYST.2019.2933001 – ident: ref8 doi: 10.1109/TITS.2015.2483063 – ident: ref29 doi: 10.1109/TVT.2020.3040321 – ident: ref2 doi: 10.1109/TVT.2014.2369522 – ident: ref13 doi: 10.1109/TITS.2017.2660544 – ident: ref5 doi: 10.1109/COMST.2018.2888904 – ident: ref27 doi: 10.1109/ACC.2014.6859490 – ident: ref28 doi: 10.1109/TITS.2016.2574246 – ident: ref1 doi: 10.1109/COMST.2014.2339817 – ident: ref31 doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023 – ident: ref41 doi: 10.1109/ITSC.2019.8917306 – ident: ref12 doi: 10.1109/TWC.2016.2613078 – ident: ref17 doi: 10.1609/aaai.v32i1.11694 |
| SSID | ssj0014491 |
| Score | 2.511853 |
| Snippet | Connected cruise control (CCC) refers to a type of advanced driver assistance system combined with wireless vehicle-to-vehicle (V2V) communication technology... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9011 |
| SubjectTerms | Advanced driver assistance systems Algorithms Communication Communication delays connected cruise control Control algorithms Control stability Controllers Cruise control Decision analysis Delays dynamic traffic Heuristic algorithms intelligent control algorithm Machine learning Markov processes Optimal control Optimization Performance degradation Real-time systems Stability analysis Vehicle dynamics Vehicle safety Wireless communications |
| Title | Design of Intelligent Connected Cruise Control With Vehicle-to-Vehicle Communication Delays |
| URI | https://ieeexplore.ieee.org/document/9779955 https://www.proquest.com/docview/2703132382 |
| Volume | 71 |
| WOSCitedRecordID | wos000846892800078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOiUHL4J1_UrTHGVzKMjwMOfAQ0nTlA3GKmsn-N_7knZlogje0pKE8l5f83t9Hz-AK-EngaCxtBTXFGYJiy1uu8ISiE1TRmmYGDqg8RMbDsPJhD834KauhVFKmeQzdauHJpafZHKlf5V1EatwTukWbDHGylqtOmLg-xU7noMGjLBgHZK0eXc0HqEj6LronzJmayLJjSPIcKr8-BCb02Ww_7_nOoC9CkWSu1Lth9BQiyPY3egt2IK3vsnNIFlKHuu2mwUxiS0SYSbpLVezXOkbOledvM6KKRmrqd7QKjKrGpJvFSSkr-biMz-Gl8H9qPdgVUwKlnS5U1ixQlOWktvSd1LPRcNlHpUpj82FCFBFcSyDNGYBRXzBmAhoisCPKkRbQSK9E2gusoU6BRInnkAvJPVDBAZUeBwBgaNoEvpSKp_LNnTXwo1k1WZcs13MI-Nu2DxCdURaHVGljjZc1yveyxYbf8xtafHX8yrJt6Gz1l9U2WAeucz0pfRC9-z3Veewo_cu0_k60CyWK3UB2_KjmOXLS_N6fQEvA8ze |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CurBt1ife_AiGJvHbjZ7lNZSsRYPtQoewmazoYXSSpsK_ntnt2lQFMHbJuwmYSaT_Sbz-AAuJE1DyRLlaGEozFKeOML1pSMRm2acsSi1dEC9Nu90opcX8bgEV2UtjNbaJp_pazO0sfx0rGbmV1kNsYoQjC3DCqPU9-bVWmXMgNKCH89DE0ZgsAhKuqLW7XXRFfR99FA5dw2V5JdNyLKq_PgU2_2lufW_J9uGzQJHkpu54ndgSY92YeNLd8E9eG3Y7Awyzshd2XgzJza1RSHQJPXJbDDV5oTJVifPg7xPerpvLujkY6cYkm81JKShh_Jjug9PzdtuveUUXAqO8oWXO4lGY1ZKuIp6WeCj6fKAqUwk9kCGqKQkUWGW8JAhwuBchixD6Mc04q0wVcEBVEbjkT4EkqSBRD8koxFCAyYDgZDA0yyNqFKaClWF2kK4sSoajRu-i2FsHQ5XxKiO2KgjLtRRhctyxdu8ycYfc_eM-Mt5heSrcLLQX1xY4TT2ue1MGUT-0e-rzmGt1X1ox-27zv0xrJv7zJP7TqCST2b6FFbVez6YTs7sq_YJAQXQJQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Intelligent+Connected+Cruise+Control+With+Vehicle-to-Vehicle+Communication+Delays&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Wang%2C+Zhuwei&rft.au=Jin%2C+Senfan&rft.au=Liu%2C+Lihan&rft.au=Fang%2C+Chao&rft.date=2022-08-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=8&rft.spage=9011&rft.epage=9025&rft_id=info:doi/10.1109%2FTVT.2022.3177008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2022_3177008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |