Tracking Control for Nonlinear Nonparametric Systems Based on the Stochastic Approximation Algorithm

In this article, we study the tracking control problem for nonlinear nonparametric systems, and additive random observation noise is also taken into account. The dynamical function is allowed to be time varying and possess an arbitrary growth rate at control input. The control algorithm is designed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 68; H. 1; S. 230 - 241
Hauptverfasser: Feng, Wenhui, Zhao, Shixin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we study the tracking control problem for nonlinear nonparametric systems, and additive random observation noise is also taken into account. The dynamical function is allowed to be time varying and possess an arbitrary growth rate at control input. The control algorithm is designed on the basis of the stochastic approximation algorithm with expanding truncations, and it is found that there is a tradeoff between the growth rate of the dynamical function at control input and that of the truncation bound sequence to be chosen. We prove that the average tracking or strong tracking is asymptotically achieved for a class of reference state sequences, which can be strongly averaged. Finally, numerical simulations given in this article justify the theoretical assertions.
AbstractList In this article, we study the tracking control problem for nonlinear nonparametric systems, and additive random observation noise is also taken into account. The dynamical function is allowed to be time varying and possess an arbitrary growth rate at control input. The control algorithm is designed on the basis of the stochastic approximation algorithm with expanding truncations, and it is found that there is a tradeoff between the growth rate of the dynamical function at control input and that of the truncation bound sequence to be chosen. We prove that the average tracking or strong tracking is asymptotically achieved for a class of reference state sequences, which can be strongly averaged. Finally, numerical simulations given in this article justify the theoretical assertions.
Author Feng, Wenhui
Zhao, Shixin
Author_xml – sequence: 1
  givenname: Wenhui
  orcidid: 0000-0002-0839-7861
  surname: Feng
  fullname: Feng, Wenhui
  email: fengwh@stdu.edu.cn
  organization: Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang, China
– sequence: 2
  givenname: Shixin
  orcidid: 0000-0001-8889-4771
  surname: Zhao
  fullname: Zhao, Shixin
  email: cssxzhao@163.com
  organization: Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang, China
BookMark eNp9UD1PwzAQtVCRKIUdiSUSc4rPThxnDBVfUgVDyxw5jtO6JHGwXYn-e9wPMTAw3Z3ee_fu3iUa9aZXCN0AngLg_H5ZzKYEE5hSoDzDcIbGkKY8JimhIzTGGHicE84u0KVzmzCyJIExqpdWyE_dr6KZ6b01bdQYG72ZvtW9EoduEFZ0ylsto8XOedW56EE4VUemj_xaRQtv5Fo4H_BiGKz51p3wOoBFuzJW-3V3hc4b0Tp1faoT9PH0uJy9xPP359dZMY8lycHHleSck6oBgTPOGRe5YCQVABTqLG8oxRnkFCtgaS0rBQ1LZc1ZI4BVkKiMTtDdcW-44murnC83Zmv7YFmSLOUZIUmaBBY-sqQ1zlnVlIMNJ9tdCbjcZ1mGLMt9luUpyyBhfyRS-8OT3grd_ie8PQq1UurXJ2csocDoD8XKg2Q
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_automatica_2024_111647
Cites_doi 10.1007/978-1-4899-2696-8
10.1007/978-3-642-50085-5
10.1109/TCYB.2019.2921057
10.1201/b17078
10.1214/aos/1176344212
10.1137/18M1230323
10.1214/aoms/1177729392
10.1137/0319052
10.1137/17M1162603
10.1007/978-93-86279-38-5
10.1016/j.automatica.2005.04.018
10.1007/978-3-030-44184-5_100094
10.1002/acs.2293
10.1109/TAC.2007.894536
10.1109/9.964702
10.1016/j.automatica.2009.09.009
10.1214/aoms/1177729586
10.23919/CCC50068.2020.9188818
10.1109/TCST.2008.922507
10.1016/S0005-1098(01)00102-9
10.1007/978-1-4684-9352-8
10.1007/978-3-0348-8609-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2021.3138701
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-2523
EndPage 241
ExternalDocumentID 10_1109_TAC_2021_3138701
9664316
Genre orig-research
GrantInformation_xml – fundername: Department of Education of Hebei Province
  grantid: QN2021133
  funderid: 10.13039/501100003482
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-bc8882bf1a078868a9a625a1131d79f33071930e165dcbe1f65cd86fa16b14e73
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000921346300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:11:39 EDT 2025
Sat Nov 29 05:41:04 EST 2025
Tue Nov 18 22:03:05 EST 2025
Wed Aug 27 02:18:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-bc8882bf1a078868a9a625a1131d79f33071930e165dcbe1f65cd86fa16b14e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0839-7861
0000-0001-8889-4771
PQID 2758722454
PQPubID 85475
PageCount 12
ParticipantIDs crossref_primary_10_1109_TAC_2021_3138701
ieee_primary_9664316
crossref_citationtrail_10_1109_TAC_2021_3138701
proquest_journals_2758722454
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref2
ref1
ref16
Kushner (ref19) 1978
ref18
James (ref21) 2005; 65
ref24
ref23
Feng (ref10) 2016; 36
Nevelson (ref17) 1973
ref20
ref22
ref8
ref7
ref9
ref4
ref3
ref6
Hahan (ref25) 1967
Hong (ref5) 2014; 28
References_xml – ident: ref13
  doi: 10.1007/978-1-4899-2696-8
– volume-title: Stability of Motion
  year: 1967
  ident: ref25
  doi: 10.1007/978-3-642-50085-5
– volume: 36
  start-page: 893
  issue: 7
  year: 2016
  ident: ref10
  article-title: Adaptive regulator for Hammerstein and Wiener systems
  publication-title: J. Syst. Sci. Math. Sci. (Chinese Version)
– ident: ref4
  doi: 10.1109/TCYB.2019.2921057
– ident: ref16
  doi: 10.1201/b17078
– ident: ref15
  doi: 10.1214/aos/1176344212
– ident: ref22
  doi: 10.1137/18M1230323
– ident: ref14
  doi: 10.1214/aoms/1177729392
– ident: ref7
  doi: 10.1137/0319052
– ident: ref11
  doi: 10.1137/17M1162603
– ident: ref18
  doi: 10.1007/978-93-86279-38-5
– ident: ref6
  doi: 10.1016/j.automatica.2005.04.018
– ident: ref23
  doi: 10.1007/978-3-030-44184-5_100094
– volume: 28
  start-page: 332
  year: 2014
  ident: ref5
  article-title: A model-based controller for Hammerstein systems using B-sline neural networks
  publication-title: Int. J. Adaptive Control Signal Process.
  doi: 10.1002/acs.2293
– ident: ref9
  doi: 10.1109/TAC.2007.894536
– volume: 65
  volume-title: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control
  year: 2005
  ident: ref21
– volume-title: Stochastic Approximation and Recursive Estimation
  year: 1973
  ident: ref17
– ident: ref8
  doi: 10.1109/9.964702
– ident: ref3
  doi: 10.1016/j.automatica.2009.09.009
– ident: ref12
  doi: 10.1214/aoms/1177729586
– ident: ref24
  doi: 10.23919/CCC50068.2020.9188818
– ident: ref1
  doi: 10.1109/TCST.2008.922507
– ident: ref2
  doi: 10.1016/S0005-1098(01)00102-9
– volume-title: Stochastic Approximation for Constrained and Unconstrained Systems
  year: 1978
  ident: ref19
  doi: 10.1007/978-1-4684-9352-8
– ident: ref20
  doi: 10.1007/978-3-0348-8609-3
SSID ssj0016441
Score 2.4153538
Snippet In this article, we study the tracking control problem for nonlinear nonparametric systems, and additive random observation noise is also taken into account....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 230
SubjectTerms Algorithms
Approximation
Approximation algorithms
Control systems
Control theory
Convergence
Heuristic algorithms
Mathematical analysis
Nonlinear control
Nonlinear system
Nonlinear systems
Nonparametric statistics
nonparametric system
Physics
Regulators
stochastic approximation (SA)
Tracking control
Upper bound
Title Tracking Control for Nonlinear Nonparametric Systems Based on the Stochastic Approximation Algorithm
URI https://ieeexplore.ieee.org/document/9664316
https://www.proquest.com/docview/2758722454
Volume 68
WOSCitedRecordID wos000921346300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7cRUEPvlZxfZGDF8G6TV9pjuuieJBFUMFbSdJUF9ZWdqv4850k3aIogrdQklL6ZTLfJJlvAE5kQVNd-LnHZRR6kZLSkyw2hqe58nOuubZVS27YeJw-PvLbJThrc2G01vbymT43TXuWn1fqzWyVDZCam8ztDnQYS1yuVntiYPy6W3XRgIO0PZL0-eB-OMJAMKAYn4Y4Pek3F2RrqvxYiK13udr433dtwnrDIsnQwb4FS7rchrUv2oLbsGLvdqp5D3L0R8rsiJORu5dOkKiSsdPIELZlBMBfTG0tRRoJc3KB7i0nVUmQIZK7ulLPwkg6k6ERIf-YuIxHMpw-VbNJ_fyyAw9Xl_eja68pruCpgNPakwpj3wChEkgS0iQVXGAoJCgNac54EaLtI7fzNU3iXElNi8TICCSFoImkkWbhLnTLqtR7QHwZBz4-ZzLWEb4OQZZCMBwYplGqwj4MFv87U43yuCmAMc1sBOLzDBHKDEJZg1AfTtsRr05144--PYNI268Bow-HC0izxiznWYDREUPSEkf7v486gFVTT97tsRxCt5696SNYVu_1ZD47tjPuEz4U05s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54RX3wsinOax58Eaxres_jHIriHIIT9laSNHWDbZWtE3--J2ktiiL4FkpSSr-cnHOSnO8DOBMpjVRqJxYTnmt5UghLhL42PMWknTDFlFEt6YTdbtTvs8cFuKhqYZRS5vKZutRNc5afZHKut8qaGJrryu1FWNbKWWW1VnVmoD17se6iCTtRdShps2av1cZU0KGYobo4Qek3J2RUVX4sxca_3Gz978u2YbOMI0mrAH4HFtSkBhtf2AVrsGpud8pZHRL0SFLviZN2cTOdYKhKugVLBjctTQE-1upakpQk5uQKHVxCsgnBGJE85ZkccE3qTFqahvx9WNQ8ktboJZsO88F4F55vrnvtW6uUV7Ckw2huCYnZr4NgcQwToiDijGMyxCl1aRKy1EXrx-jOVjTwEykUTQNNJBCknAaCeip092Bpkk3UPhBb-I6Nz0PhKw9fhzALzkMc6EZeJN0GND__dyxL7nEtgTGKTQ5isxgRijVCcYlQA86rEa8F78YffesakapfCUYDjj4hjUvDnMUO5kchhi2-d_D7qFNYu-09dOLOXff-ENa1unyx43IES_l0ro5hRb7lw9n0xMy-D24o1uQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+Control+for+Nonlinear+Nonparametric+Systems+Based+on+the+Stochastic+Approximation+Algorithm&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Feng%2C+Wenhui&rft.au=Zhao%2C+Shixin&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=68&rft.issue=1&rft.spage=230&rft.epage=241&rft_id=info:doi/10.1109%2FTAC.2021.3138701&rft.externalDocID=9664316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon