Efficient multidisciplinary modeling of aircraft undercarriage landing gear using data-driven Naïve Bayes and finite element analysis

Advancements in aircraft design and production necessitate exhaustive simulations of critical components, such as landing gear, to ensure optimal performance and safety. This paper presents a novel approach that combines finite element analysis (FEA) and machine learning (ML) for comprehensive simul...

Full description

Saved in:
Bibliographic Details
Published in:Multiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 4; pp. 3187 - 3199
Main Authors: Al-Haddad, Luttfi A., Mahdi, Nibras M.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.09.2024
Subjects:
ISSN:2520-8160, 2520-8179
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Advancements in aircraft design and production necessitate exhaustive simulations of critical components, such as landing gear, to ensure optimal performance and safety. This paper presents a novel approach that combines finite element analysis (FEA) and machine learning (ML) for comprehensive simulations of aircraft landing gear during the landing phase, taking into account aircraft weight and wind force. In this paper, FEA-based simulations are performed accordingly where the deformation, stress, strain, and strain energy are all computed. A duration of 4 h and 42 min was the computed time for one run of ANSYS simulation for the landing touch methodology. Depending on the simulated deformation results, the values of stress, strain, and strain energy are forecasted based on the ML Naïve Bayes (NB) model. The proposed method is highly time effective as the forecasts would endure 1 s instead of around 5 h of calculation. To strengthen and present the model’s dependability, root mean square error (RMSE) and the coefficient of determination are called out, with values corresponding to 0.9% and 1.000, respectively. Overall, it has been evidenced that FEA–ML-based analyses are far more time effective and preferable over traditional FEA-based simulations. The proposed methodology is geometrical friendly as it might be applied over any part of an aircraft, hence advancing aircraft design capabilities.
AbstractList Advancements in aircraft design and production necessitate exhaustive simulations of critical components, such as landing gear, to ensure optimal performance and safety. This paper presents a novel approach that combines finite element analysis (FEA) and machine learning (ML) for comprehensive simulations of aircraft landing gear during the landing phase, taking into account aircraft weight and wind force. In this paper, FEA-based simulations are performed accordingly where the deformation, stress, strain, and strain energy are all computed. A duration of 4 h and 42 min was the computed time for one run of ANSYS simulation for the landing touch methodology. Depending on the simulated deformation results, the values of stress, strain, and strain energy are forecasted based on the ML Naïve Bayes (NB) model. The proposed method is highly time effective as the forecasts would endure 1 s instead of around 5 h of calculation. To strengthen and present the model’s dependability, root mean square error (RMSE) and the coefficient of determination are called out, with values corresponding to 0.9% and 1.000, respectively. Overall, it has been evidenced that FEA–ML-based analyses are far more time effective and preferable over traditional FEA-based simulations. The proposed methodology is geometrical friendly as it might be applied over any part of an aircraft, hence advancing aircraft design capabilities.
Author Mahdi, Nibras M.
Al-Haddad, Luttfi A.
Author_xml – sequence: 1
  givenname: Luttfi A.
  orcidid: 0000-0001-7832-1048
  surname: Al-Haddad
  fullname: Al-Haddad, Luttfi A.
  email: Luttfi.a.alhaddad@uotechnology.edu.iq
  organization: Training and Workshops Center, University of Technology- Iraq
– sequence: 2
  givenname: Nibras M.
  orcidid: 0000-0002-8767-8361
  surname: Mahdi
  fullname: Mahdi, Nibras M.
  organization: Mechanical Engineering Department, University of Technology- Iraq
BookMark eNp9kE1OwzAQhS1UJErpBVj5AgE7f3aWUJUfqYINrKOJPYlcJU5lO5V6Aa7DIbgYCUUsWHQ1T5r3zei9SzKzvUVCrjm74YyJW5_yIikiFqcRY4ksovSMzOMsZpHkopj96ZxdkKX3W8ZYLJJUSDYnH-u6NsqgDbQb2mC08crsWmPBHWjXaxxlQ_uagnHKQR3oYDU6Bc4ZaJC2YPXkaBAcHfwkNQSItDN7tPQFvj73SO_hgJ6OVlobawJSbLGbfoKF9uCNvyLnNbQel79zQd4f1m-rp2jz-vi8uttEKi54iCqVyYQJDjwWXAvMAUSRScyR1bwAzMdlVWkpdaWEQkjiLC0UVFII1LpiyYLEx7vK9d47rMudM92YteSsnMosj2WWY5nlT5llOkLyH6RMgGB6GxyY9jSaHFE__rENunLbD24M7U9R38v7j_Y
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109241
crossref_primary_10_1016_j_dwt_2024_100344
crossref_primary_10_1007_s11831_025_10264_1
crossref_primary_10_1007_s41939_024_00533_0
crossref_primary_10_1007_s43621_024_00782_6
crossref_primary_10_1007_s11668_024_02075_6
crossref_primary_10_1007_s42405_025_00900_2
crossref_primary_10_1002_htj_70081
crossref_primary_10_1007_s13344_025_0041_6
crossref_primary_10_1007_s10708_025_11288_7
crossref_primary_10_3390_ma18143371
crossref_primary_10_1007_s11465_025_0821_y
crossref_primary_10_1007_s41939_025_01023_7
crossref_primary_10_1007_s42107_024_01047_3
crossref_primary_10_1007_s43939_024_00175_6
crossref_primary_10_1515_eng_2024_0052
crossref_primary_10_1038_s41598_024_69462_9
crossref_primary_10_1515_cls_2024_0015
crossref_primary_10_1016_j_heliyon_2024_e34202
crossref_primary_10_1007_s41939_025_00966_1
crossref_primary_10_56294_saludcyt20251752
crossref_primary_10_1515_eng_2024_0081
crossref_primary_10_3390_app15105422
Cites_doi 10.1016/j.engfailanal.2020.105015
10.30684/etj.2023.142873.1552
10.1016/j.jnoncrysol.2022.122095
10.3390/app12010400
10.1016/j.cja.2023.03.009
10.1016/j.engappai.2023.106951
10.1016/j.tws.2023.110913
10.1109/IT-ELA57378.2022.10107922
10.1007/s40430-023-04386-5
10.3390/aerospace9080462
10.1016/j.jmsy.2023.02.012
10.1016/j.jer.2023.08.014
10.3390/aerospace9120776
10.1016/j.engstruct.2023.117188
10.1016/j.matpr.2023.01.380
10.1016/j.triboint.2023.108828
10.1016/j.ast.2022.107629
10.1016/j.ast.2023.108349
10.1111/exsy.12900
10.3390/s23136219
10.1016/S1000-9361(07)60006-5
10.3390/app10175962
10.1007/s12008-022-01165-9
10.1088/1757-899X/1105/1/012056
10.3168/jds.2019-16295
10.1016/j.egyr.2023.04.256
10.1016/j.eswa.2023.120094
10.1016/j.ijfatigue.2023.107652
10.31272/jeasd.27.5.4
10.1023/A:1007670802811
10.1002/sim.6526
10.3390/act11070182
10.1007/s00202-023-02148-z
10.1016/B978-0-323-98352-5.00001-X
10.3390/drones7020082
10.1007/s10652-009-9137-4
10.1007/s41939-023-00199-0
10.1007/s41939-023-00184-7
10.1007/s41939-022-00130-z
10.3390/sym15040880
10.1007/s41939-023-00234-0
10.1016/j.engfailanal.2023.107548
10.1017/CBO9780511844652
10.1007/s11227-023-05584-7
10.3390/app12178598
10.1007/s41939-018-0034-8
10.1016/j.aap.2023.107043
10.1016/j.dajour.2023.100233
10.3390/act12070287
10.1007/s41939-023-00176-7
10.1142/S0218488507004959
10.1007/s41939-023-00309-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41939-024-00389-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
EndPage 3199
ExternalDocumentID 10_1007_s41939_024_00389_4
GroupedDBID -EM
0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c291t-bc583071a1271d7e6aa7958e6e0f19ae6307bbd88dbc7cea32549cab877eddb03
IEDL.DBID RSV
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001184603000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2520-8160
IngestDate Sat Nov 29 03:23:31 EST 2025
Tue Nov 18 21:28:56 EST 2025
Fri Feb 21 02:39:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Naïve Bayes
Finite element analysis
Artificial intelligence
Landing gear
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-bc583071a1271d7e6aa7958e6e0f19ae6307bbd88dbc7cea32549cab877eddb03
ORCID 0000-0001-7832-1048
0000-0002-8767-8361
PageCount 13
ParticipantIDs crossref_primary_10_1007_s41939_024_00389_4
crossref_citationtrail_10_1007_s41939_024_00389_4
springer_journals_10_1007_s41939_024_00389_4
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References SilagyiDVLiuDPrediction of severity of aviation landing accidents using support vector machine modelsAccid Anal Prev.202318710704310.1016/j.aap.2023.107043
FrankETriggLHolmesGWittenIHTechnical note: Naive Bayes for regressionMach Learn20004152510.1023/A:1007670802811
YangXPrediction of shallow foundation settlement: usage of hybridized support vector regression modelMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00199-0
KunduAKAircraft design2010CambridgeCambridge University Press10.1017/CBO9780511844652
Francis MonahengLBouwer du PreezWPoleseCFailure analysis of a landing gear nose wheel fork produced in Ti6Al4V(ELI) through selective laser meltingEng Fail Anal.202315310754810.1016/j.engfailanal.2023.107548
KadarnoPBarrinayaMAManurungAORiyandwitaBWHastutySRahmawanYPradanawatiSAWidiyatiKPutraISPurbolaksonoJMechanism analysis of a main landing gear of transporting aircraft: A design learning perspectiveEng Fail Anal.202111910501510.1016/j.engfailanal.2020.105015
LiuTDriven piles’ load capacity estimation by applying comparative regression methodsMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00184-7
LuongQVJangDSHwangJHIntelligent control based on a neural network for aircraft landing gear with a magnetorheological damper in different landing scenariosAppl Sci202010.3390/app10175962
ZhangLWeiXCrack growth life calculation approach of surface cracked landing gear strut under eccentric compression load by bulging effectInt J Fatigue.202317310765210.1016/j.ijfatigue.2023.107652
DharaAMajumderAKumarNEDhanunjayMDhanumjayaLTMuruga Lal JeyanJVDesign optimization to minimize wake of wide-body transport aircraftJ Eng Res202310.1016/j.jer.2023.08.014
HusseinSAANimaMANumerical and experimental investigation of semicircular solar updraft tower system employing porous copper metal foamJ Eng Sustain Develop20232759661410.31272/jeasd.27.5.4
JiangYFengGTangHZhangJJiangBEffect of Coulomb friction on shimmy of nose landing gear under time-varying loadTribol Int.202318810882810.1016/j.triboint.2023.108828
DUNLOP Aircraft Tyres, Tires & Databook for Boeing 737 Classic, (n.d.). dunlopaircrafttyres.co.uk/aircraft/boeing-737-classic-tires/ (accessed September 8, 2023).
LanceaCChicosL-AZahariaS-MPopM-APascariuISBuicanG-RStamateV-MSimulation, fabrication and testing of UAV composite landing gearAppl Sci202210.3390/app12178598
OgailiAAFHamzahMNJaberAAIntegration of machine learning (ML) and finite element analysis (FEA) for predicting the failure modes of a small horizontal composite bladeInt J Renew Energy Res (IJRER)20221221682179
LiPShaoXWuSFanWLiuBZhaoXConceptual design and preliminary test of the novel structure of steel inner core-UHPC composite box girderEng Struct.202430011718810.1016/j.engstruct.2023.117188
Al-HaddadLAJaberAAImproved UAV blade unbalance prediction based on machine learning and ReliefF supreme feature ranking methodJ Braz Soc Mech Sci Eng20234546310.1007/s40430-023-04386-5
Al-HaddadLAJaberAAAl-HaddadSAAl-MuslimYMFault diagnosis of actuator damage in UAVs using embedded recorded data and stacked machine learning modelsJ Supercomput202310.1007/s11227-023-05584-7
WangSRenJBaiRA semi-supervised adaptive discriminative discretization method improving discrimination power of regularized naive BayesExpert Syst Appl.202322512009410.1016/j.eswa.2023.120094
Al-HaddadLAJaberAAIbraheemLAl-HaddadSAIbrahimNSAbdulwahedFMEnhancing wind tunnel computational simulations of finite element analysis using machine learning-based algorithmsEng Technol J202310.30684/etj.2023.142873.1552
AloysiusSSWrobelLCLarge eddy simulation of plume dispersion behind an aircraft in the take-off phaseEnviron Fluid Mech2009945747010.1007/s10652-009-9137-4
Chaitanya KumarAAndrew JohnJRajaMVijayaPTyagiAKAbrahamAChapter 4 Genetic factor analysis for an early diagnosis of autism through machine learningData science for genomics2023Academic Press698410.1016/B978-0-323-98352-5.00001-X
SinghSPRoyAKMachine learning techniques to predict the dimensionless bearing capacity of circular footing on layered sand under inclined loadsMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00176-7
MoralesMRodriguezCSalmeronASelective naive Bayes for regression based on mixtures of truncated exponentialsInternat J Unc Fuzz Knowl-Based Syst200715697716238689210.1142/S0218488507004959
RajAChadhaUChadhaAMahadevanRRSaiBRChaudharyDSelvarajSKLokeshkumarRDasSKarthikeyanBNagalakshmiRChandramohanVHadidiHWeld quality monitoring via machine learning-enabled approachesInt J Interact Design Manuf (IJIDeM)202310.1007/s12008-022-01165-9
Al-HaddadLAJaberAAHamzahMNFayadMAVibration-current data fusion and gradient boosting classifier for enhanced stator fault diagnosis in three-phase permanent magnet synchronous motorsElectr Eng202310.1007/s00202-023-02148-z
WolfsonJBandyopadhyaySElidrisiMVazquez-BenitezGVockDMMusgroveDAdomaviciusGJohnsonPEO’ConnorPJA Naive Bayes machine learning approach to risk prediction using censored, time-to-event dataStat Med20153429412957337599110.1002/sim.6526
LiuXLongZPengLPrediction of Vickers hardness of amorphous alloys based on interpretable machine learningJ Non Cryst Solids202360210.1016/j.jnoncrysol.2022.122095
RomanoFSorrentinoAPelloneLMercurioUNotarnicolaLNew design paradigms and approaches for aircraft composite structuresMultiscale Multidiscip Model Exper Design20192758710.1007/s41939-018-0034-8
SunXLuoMCuiZJiZLiuHA methodology for constructing the aircraft design schemaChin J Aeronaut.20233614816710.1016/j.cja.2023.03.009
NiXYinQWeiXZhongPNieHResearch on landing stability of four-legged adaptive landing gear for multirotor UAVsAerospace202210.3390/aerospace9120776
LazzaraMChevalierMColomboMGaray GarciaJLapeyreCTesteOSurrogate modelling for an aircraft dynamic landing loads simulation using an LSTM AutoEncoder-based dimensionality reduction approachAerosp Sci Technol.202212610762910.1016/j.ast.2022.107629
van der HeideEMMVeerkampRFvan PeltMLKamphuisCAthanasiadisIDucroBJComparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattleJ Dairy Sci.20191029409942110.3168/jds.2019-16295
WuDGuHLiuHGA-based model predictive control of semi-active landing gearChin J Aeronaut.200720475410.1016/S1000-9361(07)60006-5
HsuT-HChangY-JHsuH-KChenT-THwangP-WPredicting the remaining useful life of landing gear with prognostics and health management (PHM)Aerospace202210.3390/aerospace9080462
KangB-HJoB-HKimB-GHwangJ-HChoiS-BLinear and nonlinear models for drop simulation of an aircraft landing gear system with MR dampersActuators202310.3390/act12070287
MohammedSAAl-HaddadLAAlaweeWHDhahadHAJaberAAAl-HaddadSAForecasting the productivity of a solar distiller enhanced with an inclined absorber plate using stochastic gradient descent in artificial neural networksMultiscale Multidiscipl Model Exper Design202310.1007/s41939-023-00309-y
AristaRZhengXLuJMasFAn ontology-based engineering system to support aircraft manufacturing system designJ Manuf Syst.20236827028810.1016/j.jmsy.2023.02.012
Al-HaddadLAJaberAAAn intelligent fault diagnosis approach for multirotor UAVs based on deep neural network of multi-resolution transform featuresDrones202378210.3390/drones7020082
Al-Haddad LA, Jaber A (2022a) Applications of Machine Learning Techniques for Fault Diagnosis of UAVs.
VishwakarmaMKesswaniNA new two-phase intrusion detection system with Naïve Bayes machine learning for data classification and elliptic envelop method for anomaly detectionDecision Anal J.2023710023310.1016/j.dajour.2023.100233
GuoWWangGWangCWangYDistribution network topology identification based on gradient boosting decision tree and attribute weighted naive BayesEnergy Reports.2023972773610.1016/j.egyr.2023.04.256
LinLTongCGuoFFuSLvYHeWA self-attention integrated learning model for landing gear performance predictionSensors202310.3390/s23136219
Muhsen AA , Al-Malik AAR, Attiya BH, Al-Hardanee OF, Abdalazize KA (2021) Modal analysis of Kaplan turbine in Haditha hydropower plant using ANSYS and SolidWorks. In: IOP Conf Ser Mater Sci Eng, IOP Publishing. p 012056.
OkelloJLEl-BabAMRFYoshinoMEl-HofyHAModelling of heat-affected zone (HAZ) in CO2 laser micromachining of aluminium-coated polymethyl methacrylate (PMMA) using adaptive neuro-fuzzy inference system (ANFIS)Multiscale Multidiscip Model Exper Design202310.1007/s41939-023-00234-0
SharmaNThakurMSUpadhyaASihagPSoft computing techniques for assessment of strength of concrete with marble powderMultiscale Multidiscip Model Exper Design2023 6819610.1007/s41939-022-00130-z
ShenKZhaoDFault diagnosis for aircraft hydraulic systems via one-dimensional multichannel convolution neural networkActuators202210.3390/act11070182
Al-Haddad LA, Jaber AA (2022b) An Intelligent Quadcopter Unbalance Classification Method Based on Stochastic Gradient Descent Logistic Regression, in: 2022 3rd Information Technology To Enhance E-Learning and Other Application (IT-ELA). p 152–156. https://doi.org/10.1109/IT-ELA57378.2022.10107922.
SaporitoMDa RonchABartoliNDefoortSRobust multidisciplinary analysis and optimization for conceptual design of flexible aircraft under dynamic aeroelastic constraintsAerosp Sci Technol.202313810834910.1016/j.ast.2023.108349
GuptaASoniVShahDLakdawalaAGenerative design of main landing gear for a remote-controlled aircraftMater Today Proc202310.1016/j.matpr.2023.01.380
CarneiroDGuimaraesMCarvalhoMNovaisPUsing meta-learning to predict performance metrics in machine learning problemsExpert Syst20234010.1111/exsy.12900
FuYFuHZhangSA novel safe life extension method for aircraft main landing gear based on statistical inference of test life data and outfield life dataSymmetry (Basel)202310.3390/sym15040880
ChampasakPPanagantNPholdeeNBureeratSRajendranPYildizARGrid-based many-objective optimiser for aircraft conceptual design with multiple aircraft configurationsEng Appl Artif Intell.202312610695110.1016/j.engappai.2023.106951
ZhangYTongJGuoQGuoJLiuXChenLHierarchical multiscale analysis for 3D woven composi
R Arista (389_CR10) 2023; 68
A Dhara (389_CR14) 2023
X Sun (389_CR48) 2023; 36
B-H Kang (389_CR25) 2023
AK Kundu (389_CR26) 2010
C Lancea (389_CR27) 2022
P Kadarno (389_CR24) 2021; 119
N Sharma (389_CR44) 2023; 6
P Li (389_CR29) 2024; 300
SP Singh (389_CR47) 2023
L Lin (389_CR30) 2023
LA Al-Haddad (389_CR5) 2023
Q-V Luong (389_CR34) 2022
K Shen (389_CR45) 2022
T-H Hsu (389_CR21) 2022
389_CR37
L Francis Monaheng (389_CR16) 2023; 153
E Frank (389_CR17) 2000; 41
M Saporito (389_CR43) 2023; 138
L Zhang (389_CR55) 2023; 173
LA Al-Haddad (389_CR1) 2023; 45
M Vishwakarma (389_CR50) 2023; 7
SAA Hussein (389_CR22) 2023; 27
P Champasak (389_CR13) 2023; 126
DV Silagyi (389_CR46) 2023; 187
SA Mohammed (389_CR35) 2023
D Carneiro (389_CR11) 2023; 40
A Chaitanya Kumar (389_CR12) 2023
X Yang (389_CR54) 2023
EMM van der Heide (389_CR49) 2019; 102
W Guo (389_CR19) 2023; 9
LA Al-Haddad (389_CR4) 2023
A Raj (389_CR41) 2023
SA Amin (389_CR9) 2019; 23
Y Jiang (389_CR23) 2023; 188
JL Okello (389_CR40) 2023
389_CR6
389_CR7
SS Aloysius (389_CR8) 2009; 9
M Morales (389_CR36) 2007; 15
T Liu (389_CR31) 2023
QV Luong (389_CR33) 2020
AAF Ogaili (389_CR39) 2022; 12
389_CR15
M Lazzara (389_CR28) 2022; 126
Y Zhang (389_CR56) 2023; 189
J Wolfson (389_CR52) 2015; 34
LA Al-Haddad (389_CR3) 2023
X Liu (389_CR32) 2023; 602
F Romano (389_CR42) 2019; 2
D Wu (389_CR53) 2007; 20
LA Al-Haddad (389_CR2) 2023; 7
X Ni (389_CR38) 2022
A Gupta (389_CR20) 2023
Y Fu (389_CR18) 2023
S Wang (389_CR51) 2023; 225
References_xml – reference: ShenKZhaoDFault diagnosis for aircraft hydraulic systems via one-dimensional multichannel convolution neural networkActuators202210.3390/act11070182
– reference: VishwakarmaMKesswaniNA new two-phase intrusion detection system with Naïve Bayes machine learning for data classification and elliptic envelop method for anomaly detectionDecision Anal J.2023710023310.1016/j.dajour.2023.100233
– reference: LiPShaoXWuSFanWLiuBZhaoXConceptual design and preliminary test of the novel structure of steel inner core-UHPC composite box girderEng Struct.202430011718810.1016/j.engstruct.2023.117188
– reference: FrankETriggLHolmesGWittenIHTechnical note: Naive Bayes for regressionMach Learn20004152510.1023/A:1007670802811
– reference: WolfsonJBandyopadhyaySElidrisiMVazquez-BenitezGVockDMMusgroveDAdomaviciusGJohnsonPEO’ConnorPJA Naive Bayes machine learning approach to risk prediction using censored, time-to-event dataStat Med20153429412957337599110.1002/sim.6526
– reference: DharaAMajumderAKumarNEDhanunjayMDhanumjayaLTMuruga Lal JeyanJVDesign optimization to minimize wake of wide-body transport aircraftJ Eng Res202310.1016/j.jer.2023.08.014
– reference: DUNLOP Aircraft Tyres, Tires & Databook for Boeing 737 Classic, (n.d.). dunlopaircrafttyres.co.uk/aircraft/boeing-737-classic-tires/ (accessed September 8, 2023).
– reference: AminSAHassanAYNumerical and experimental study of shape effect behavior of nitinol wireJ Eng Sustain Develop201923111
– reference: KangB-HJoB-HKimB-GHwangJ-HChoiS-BLinear and nonlinear models for drop simulation of an aircraft landing gear system with MR dampersActuators202310.3390/act12070287
– reference: OkelloJLEl-BabAMRFYoshinoMEl-HofyHAModelling of heat-affected zone (HAZ) in CO2 laser micromachining of aluminium-coated polymethyl methacrylate (PMMA) using adaptive neuro-fuzzy inference system (ANFIS)Multiscale Multidiscip Model Exper Design202310.1007/s41939-023-00234-0
– reference: RajAChadhaUChadhaAMahadevanRRSaiBRChaudharyDSelvarajSKLokeshkumarRDasSKarthikeyanBNagalakshmiRChandramohanVHadidiHWeld quality monitoring via machine learning-enabled approachesInt J Interact Design Manuf (IJIDeM)202310.1007/s12008-022-01165-9
– reference: MohammedSAAl-HaddadLAAlaweeWHDhahadHAJaberAAAl-HaddadSAForecasting the productivity of a solar distiller enhanced with an inclined absorber plate using stochastic gradient descent in artificial neural networksMultiscale Multidiscipl Model Exper Design202310.1007/s41939-023-00309-y
– reference: Al-Haddad LA, Jaber AA (2022b) An Intelligent Quadcopter Unbalance Classification Method Based on Stochastic Gradient Descent Logistic Regression, in: 2022 3rd Information Technology To Enhance E-Learning and Other Application (IT-ELA). p 152–156. https://doi.org/10.1109/IT-ELA57378.2022.10107922.
– reference: GuptaASoniVShahDLakdawalaAGenerative design of main landing gear for a remote-controlled aircraftMater Today Proc202310.1016/j.matpr.2023.01.380
– reference: AloysiusSSWrobelLCLarge eddy simulation of plume dispersion behind an aircraft in the take-off phaseEnviron Fluid Mech2009945747010.1007/s10652-009-9137-4
– reference: Chaitanya KumarAAndrew JohnJRajaMVijayaPTyagiAKAbrahamAChapter 4 Genetic factor analysis for an early diagnosis of autism through machine learningData science for genomics2023Academic Press698410.1016/B978-0-323-98352-5.00001-X
– reference: HsuT-HChangY-JHsuH-KChenT-THwangP-WPredicting the remaining useful life of landing gear with prognostics and health management (PHM)Aerospace202210.3390/aerospace9080462
– reference: FuYFuHZhangSA novel safe life extension method for aircraft main landing gear based on statistical inference of test life data and outfield life dataSymmetry (Basel)202310.3390/sym15040880
– reference: YangXPrediction of shallow foundation settlement: usage of hybridized support vector regression modelMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00199-0
– reference: OgailiAAFHamzahMNJaberAAIntegration of machine learning (ML) and finite element analysis (FEA) for predicting the failure modes of a small horizontal composite bladeInt J Renew Energy Res (IJRER)20221221682179
– reference: van der HeideEMMVeerkampRFvan PeltMLKamphuisCAthanasiadisIDucroBJComparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattleJ Dairy Sci.20191029409942110.3168/jds.2019-16295
– reference: ChampasakPPanagantNPholdeeNBureeratSRajendranPYildizARGrid-based many-objective optimiser for aircraft conceptual design with multiple aircraft configurationsEng Appl Artif Intell.202312610695110.1016/j.engappai.2023.106951
– reference: Al-HaddadLAJaberAAAn intelligent fault diagnosis approach for multirotor UAVs based on deep neural network of multi-resolution transform featuresDrones202378210.3390/drones7020082
– reference: ZhangYTongJGuoQGuoJLiuXChenLHierarchical multiscale analysis for 3D woven composite leaf spring landing gearThin-Walled Structures.202318911091310.1016/j.tws.2023.110913
– reference: KadarnoPBarrinayaMAManurungAORiyandwitaBWHastutySRahmawanYPradanawatiSAWidiyatiKPutraISPurbolaksonoJMechanism analysis of a main landing gear of transporting aircraft: A design learning perspectiveEng Fail Anal.202111910501510.1016/j.engfailanal.2020.105015
– reference: LuongQVJangDSHwangJHIntelligent control based on a neural network for aircraft landing gear with a magnetorheological damper in different landing scenariosAppl Sci202010.3390/app10175962
– reference: RomanoFSorrentinoAPelloneLMercurioUNotarnicolaLNew design paradigms and approaches for aircraft composite structuresMultiscale Multidiscip Model Exper Design20192758710.1007/s41939-018-0034-8
– reference: Al-Haddad LA, Jaber A (2022a) Applications of Machine Learning Techniques for Fault Diagnosis of UAVs.
– reference: Al-HaddadLAJaberAAImproved UAV blade unbalance prediction based on machine learning and ReliefF supreme feature ranking methodJ Braz Soc Mech Sci Eng20234546310.1007/s40430-023-04386-5
– reference: LinLTongCGuoFFuSLvYHeWA self-attention integrated learning model for landing gear performance predictionSensors202310.3390/s23136219
– reference: Muhsen AA , Al-Malik AAR, Attiya BH, Al-Hardanee OF, Abdalazize KA (2021) Modal analysis of Kaplan turbine in Haditha hydropower plant using ANSYS and SolidWorks. In: IOP Conf Ser Mater Sci Eng, IOP Publishing. p 012056.
– reference: Al-HaddadLAJaberAAHamzahMNFayadMAVibration-current data fusion and gradient boosting classifier for enhanced stator fault diagnosis in three-phase permanent magnet synchronous motorsElectr Eng202310.1007/s00202-023-02148-z
– reference: AristaRZhengXLuJMasFAn ontology-based engineering system to support aircraft manufacturing system designJ Manuf Syst.20236827028810.1016/j.jmsy.2023.02.012
– reference: LiuTDriven piles’ load capacity estimation by applying comparative regression methodsMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00184-7
– reference: MoralesMRodriguezCSalmeronASelective naive Bayes for regression based on mixtures of truncated exponentialsInternat J Unc Fuzz Knowl-Based Syst200715697716238689210.1142/S0218488507004959
– reference: GuoWWangGWangCWangYDistribution network topology identification based on gradient boosting decision tree and attribute weighted naive BayesEnergy Reports.2023972773610.1016/j.egyr.2023.04.256
– reference: SilagyiDVLiuDPrediction of severity of aviation landing accidents using support vector machine modelsAccid Anal Prev.202318710704310.1016/j.aap.2023.107043
– reference: SaporitoMDa RonchABartoliNDefoortSRobust multidisciplinary analysis and optimization for conceptual design of flexible aircraft under dynamic aeroelastic constraintsAerosp Sci Technol.202313810834910.1016/j.ast.2023.108349
– reference: WuDGuHLiuHGA-based model predictive control of semi-active landing gearChin J Aeronaut.200720475410.1016/S1000-9361(07)60006-5
– reference: HusseinSAANimaMANumerical and experimental investigation of semicircular solar updraft tower system employing porous copper metal foamJ Eng Sustain Develop20232759661410.31272/jeasd.27.5.4
– reference: SinghSPRoyAKMachine learning techniques to predict the dimensionless bearing capacity of circular footing on layered sand under inclined loadsMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00176-7
– reference: ZhangLWeiXCrack growth life calculation approach of surface cracked landing gear strut under eccentric compression load by bulging effectInt J Fatigue.202317310765210.1016/j.ijfatigue.2023.107652
– reference: Francis MonahengLBouwer du PreezWPoleseCFailure analysis of a landing gear nose wheel fork produced in Ti6Al4V(ELI) through selective laser meltingEng Fail Anal.202315310754810.1016/j.engfailanal.2023.107548
– reference: LiuXLongZPengLPrediction of Vickers hardness of amorphous alloys based on interpretable machine learningJ Non Cryst Solids202360210.1016/j.jnoncrysol.2022.122095
– reference: JiangYFengGTangHZhangJJiangBEffect of Coulomb friction on shimmy of nose landing gear under time-varying loadTribol Int.202318810882810.1016/j.triboint.2023.108828
– reference: KunduAKAircraft design2010CambridgeCambridge University Press10.1017/CBO9780511844652
– reference: CarneiroDGuimaraesMCarvalhoMNovaisPUsing meta-learning to predict performance metrics in machine learning problemsExpert Syst20234010.1111/exsy.12900
– reference: NiXYinQWeiXZhongPNieHResearch on landing stability of four-legged adaptive landing gear for multirotor UAVsAerospace202210.3390/aerospace9120776
– reference: Al-HaddadLAJaberAAAl-HaddadSAAl-MuslimYMFault diagnosis of actuator damage in UAVs using embedded recorded data and stacked machine learning modelsJ Supercomput202310.1007/s11227-023-05584-7
– reference: Al-HaddadLAJaberAAIbraheemLAl-HaddadSAIbrahimNSAbdulwahedFMEnhancing wind tunnel computational simulations of finite element analysis using machine learning-based algorithmsEng Technol J202310.30684/etj.2023.142873.1552
– reference: LuongQ-VJoB-HHwangJ-HJangD-SA supervised neural network control for magnetorheological damper in an aircraft landing gearAppl Sci202210.3390/app12010400
– reference: LanceaCChicosL-AZahariaS-MPopM-APascariuISBuicanG-RStamateV-MSimulation, fabrication and testing of UAV composite landing gearAppl Sci202210.3390/app12178598
– reference: SharmaNThakurMSUpadhyaASihagPSoft computing techniques for assessment of strength of concrete with marble powderMultiscale Multidiscip Model Exper Design2023 6819610.1007/s41939-022-00130-z
– reference: WangSRenJBaiRA semi-supervised adaptive discriminative discretization method improving discrimination power of regularized naive BayesExpert Syst Appl.202322512009410.1016/j.eswa.2023.120094
– reference: SunXLuoMCuiZJiZLiuHA methodology for constructing the aircraft design schemaChin J Aeronaut.20233614816710.1016/j.cja.2023.03.009
– reference: LazzaraMChevalierMColomboMGaray GarciaJLapeyreCTesteOSurrogate modelling for an aircraft dynamic landing loads simulation using an LSTM AutoEncoder-based dimensionality reduction approachAerosp Sci Technol.202212610762910.1016/j.ast.2022.107629
– volume: 119
  start-page: 105015
  year: 2021
  ident: 389_CR24
  publication-title: Eng Fail Anal.
  doi: 10.1016/j.engfailanal.2020.105015
– year: 2023
  ident: 389_CR3
  publication-title: Eng Technol J
  doi: 10.30684/etj.2023.142873.1552
– volume: 602
  year: 2023
  ident: 389_CR32
  publication-title: J Non Cryst Solids
  doi: 10.1016/j.jnoncrysol.2022.122095
– year: 2022
  ident: 389_CR34
  publication-title: Appl Sci
  doi: 10.3390/app12010400
– volume: 36
  start-page: 148
  year: 2023
  ident: 389_CR48
  publication-title: Chin J Aeronaut.
  doi: 10.1016/j.cja.2023.03.009
– volume: 126
  start-page: 106951
  year: 2023
  ident: 389_CR13
  publication-title: Eng Appl Artif Intell.
  doi: 10.1016/j.engappai.2023.106951
– volume: 12
  start-page: 2168
  year: 2022
  ident: 389_CR39
  publication-title: Int J Renew Energy Res (IJRER)
– volume: 189
  start-page: 110913
  year: 2023
  ident: 389_CR56
  publication-title: Thin-Walled Structures.
  doi: 10.1016/j.tws.2023.110913
– ident: 389_CR7
  doi: 10.1109/IT-ELA57378.2022.10107922
– volume: 45
  start-page: 463
  year: 2023
  ident: 389_CR1
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-023-04386-5
– ident: 389_CR6
– year: 2022
  ident: 389_CR21
  publication-title: Aerospace
  doi: 10.3390/aerospace9080462
– volume: 68
  start-page: 270
  year: 2023
  ident: 389_CR10
  publication-title: J Manuf Syst.
  doi: 10.1016/j.jmsy.2023.02.012
– ident: 389_CR15
– year: 2023
  ident: 389_CR14
  publication-title: J Eng Res
  doi: 10.1016/j.jer.2023.08.014
– year: 2022
  ident: 389_CR38
  publication-title: Aerospace
  doi: 10.3390/aerospace9120776
– volume: 300
  start-page: 117188
  year: 2024
  ident: 389_CR29
  publication-title: Eng Struct.
  doi: 10.1016/j.engstruct.2023.117188
– year: 2023
  ident: 389_CR20
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2023.01.380
– volume: 188
  start-page: 108828
  year: 2023
  ident: 389_CR23
  publication-title: Tribol Int.
  doi: 10.1016/j.triboint.2023.108828
– volume: 126
  start-page: 107629
  year: 2022
  ident: 389_CR28
  publication-title: Aerosp Sci Technol.
  doi: 10.1016/j.ast.2022.107629
– volume: 138
  start-page: 108349
  year: 2023
  ident: 389_CR43
  publication-title: Aerosp Sci Technol.
  doi: 10.1016/j.ast.2023.108349
– volume: 40
  year: 2023
  ident: 389_CR11
  publication-title: Expert Syst
  doi: 10.1111/exsy.12900
– year: 2023
  ident: 389_CR30
  publication-title: Sensors
  doi: 10.3390/s23136219
– volume: 20
  start-page: 47
  year: 2007
  ident: 389_CR53
  publication-title: Chin J Aeronaut.
  doi: 10.1016/S1000-9361(07)60006-5
– year: 2020
  ident: 389_CR33
  publication-title: Appl Sci
  doi: 10.3390/app10175962
– year: 2023
  ident: 389_CR41
  publication-title: Int J Interact Design Manuf (IJIDeM)
  doi: 10.1007/s12008-022-01165-9
– ident: 389_CR37
  doi: 10.1088/1757-899X/1105/1/012056
– volume: 102
  start-page: 9409
  year: 2019
  ident: 389_CR49
  publication-title: J Dairy Sci.
  doi: 10.3168/jds.2019-16295
– volume: 9
  start-page: 727
  year: 2023
  ident: 389_CR19
  publication-title: Energy Reports.
  doi: 10.1016/j.egyr.2023.04.256
– volume: 225
  start-page: 120094
  year: 2023
  ident: 389_CR51
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2023.120094
– volume: 173
  start-page: 107652
  year: 2023
  ident: 389_CR55
  publication-title: Int J Fatigue.
  doi: 10.1016/j.ijfatigue.2023.107652
– volume: 27
  start-page: 596
  year: 2023
  ident: 389_CR22
  publication-title: J Eng Sustain Develop
  doi: 10.31272/jeasd.27.5.4
– volume: 41
  start-page: 5
  year: 2000
  ident: 389_CR17
  publication-title: Mach Learn
  doi: 10.1023/A:1007670802811
– volume: 34
  start-page: 2941
  year: 2015
  ident: 389_CR52
  publication-title: Stat Med
  doi: 10.1002/sim.6526
– year: 2022
  ident: 389_CR45
  publication-title: Actuators
  doi: 10.3390/act11070182
– year: 2023
  ident: 389_CR5
  publication-title: Electr Eng
  doi: 10.1007/s00202-023-02148-z
– start-page: 69
  volume-title: Data science for genomics
  year: 2023
  ident: 389_CR12
  doi: 10.1016/B978-0-323-98352-5.00001-X
– volume: 7
  start-page: 82
  year: 2023
  ident: 389_CR2
  publication-title: Drones
  doi: 10.3390/drones7020082
– volume: 9
  start-page: 457
  year: 2009
  ident: 389_CR8
  publication-title: Environ Fluid Mech
  doi: 10.1007/s10652-009-9137-4
– year: 2023
  ident: 389_CR54
  publication-title: Multiscale Multidiscip Model Exper Design
  doi: 10.1007/s41939-023-00199-0
– volume: 23
  start-page: 1
  year: 2019
  ident: 389_CR9
  publication-title: J Eng Sustain Develop
– year: 2023
  ident: 389_CR31
  publication-title: Multiscale Multidiscip Model Exper Design
  doi: 10.1007/s41939-023-00184-7
– volume: 6
  start-page: 81
  year: 2023
  ident: 389_CR44
  publication-title: Multiscale Multidiscip Model Exper Design
  doi: 10.1007/s41939-022-00130-z
– year: 2023
  ident: 389_CR18
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym15040880
– year: 2023
  ident: 389_CR40
  publication-title: Multiscale Multidiscip Model Exper Design
  doi: 10.1007/s41939-023-00234-0
– volume: 153
  start-page: 107548
  year: 2023
  ident: 389_CR16
  publication-title: Eng Fail Anal.
  doi: 10.1016/j.engfailanal.2023.107548
– volume-title: Aircraft design
  year: 2010
  ident: 389_CR26
  doi: 10.1017/CBO9780511844652
– year: 2023
  ident: 389_CR4
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05584-7
– year: 2022
  ident: 389_CR27
  publication-title: Appl Sci
  doi: 10.3390/app12178598
– volume: 2
  start-page: 75
  year: 2019
  ident: 389_CR42
  publication-title: Multiscale Multidiscip Model Exper Design
  doi: 10.1007/s41939-018-0034-8
– volume: 187
  start-page: 107043
  year: 2023
  ident: 389_CR46
  publication-title: Accid Anal Prev.
  doi: 10.1016/j.aap.2023.107043
– volume: 7
  start-page: 100233
  year: 2023
  ident: 389_CR50
  publication-title: Decision Anal J.
  doi: 10.1016/j.dajour.2023.100233
– year: 2023
  ident: 389_CR25
  publication-title: Actuators
  doi: 10.3390/act12070287
– year: 2023
  ident: 389_CR47
  publication-title: Multiscale Multidiscip Model Exper Design
  doi: 10.1007/s41939-023-00176-7
– volume: 15
  start-page: 697
  year: 2007
  ident: 389_CR36
  publication-title: Internat J Unc Fuzz Knowl-Based Syst
  doi: 10.1142/S0218488507004959
– year: 2023
  ident: 389_CR35
  publication-title: Multiscale Multidiscipl Model Exper Design
  doi: 10.1007/s41939-023-00309-y
SSID ssj0002734780
ssib042110740
Score 2.3889434
Snippet Advancements in aircraft design and production necessitate exhaustive simulations of critical components, such as landing gear, to ensure optimal performance...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 3187
SubjectTerms Characterization and Evaluation of Materials
Engineering
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Original Paper
Simulation
Solid Mechanics
Title Efficient multidisciplinary modeling of aircraft undercarriage landing gear using data-driven Naïve Bayes and finite element analysis
URI https://link.springer.com/article/10.1007/s41939-024-00389-4
Volume 7
WOSCitedRecordID wos001184603000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: P5Z
  dateStart: 20240701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: M7S
  dateStart: 20240701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: BENPR
  dateStart: 20240701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: RSV
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7G-2IM3Xcgmm2T3qNLiqYgvegv7mJRKaSWtBf-Af8cf4R9zd5OUFqSg12SyhJ03M_MNQhfM8DDXkBAZKUGYYZoILmLCozwxDFwOof2yibTT4d2uuK-GwsZ1t3tdkvSWejbsxmysIYj1KcSVs-zBq2jNujvu1PHh8aWWIuZTmgrB5LUCcEn9CrUwtrkSp0lQTc_8fuyih1osj3qv097-3__uoK0qysTXpVjsohUY7qHNOezBffTZ8uAR1udg31Q4P56L_X4cS4ZHOZb9Qhcyn2A3blZoWViR7QEelPMwuGdVBbvu-R523abEFM5-4o78_poCvpEfMMaWFOd9F91iKNvV7aMSDOUAPbdbT7d3pFrKQHQo6IQoHXNrF6ikYUpNComUqYg5JBDkVEhI7EulDOdG6VSDjFwGqqXiaQrGqCA6RI3haAhHCNtQB6wEBa52x3TApAmoTHiklFSCcmgiWjMi0xViuVucMchmWMv-jjN7x5m_44w10eXsm7cSr2Mp9VXNu6zS3fES8uO_kZ-gjdCz33WknaLGpHiHM7Sup5P-uDj3QvsD68bnqA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBu3g3D75poGmzNnlUmSjOITrFt5LL6ZiMKd0U_AP-HX-Ef8wkbccGIuhrexpKcnIunO98B6FDZniYaYiJjJQgzDBNBBd1wqMsNgxcDqH9sImk1eKPj-KmbAobVGj3qiTpLfWo2Y3ZWEMQ61OIK2fZhafRDLMeywH5bu8eKi1iPqUpGUyeSgKXxI9QC-s2V-I0DsrumZ-XnfRQk-VR73XOl_73v8tosYwy8UmhFitoCvqraGGMe3ANfTQ8eYT1OdiDCsfbc7Gfj2PF8HOGZTfXucyG2LWb5VrmVmU7gHtFPwzu2KuCHXq-gx3alJjc2U_ckl-fb4BP5TsMsBXFWddFtxgKuLp9VJChrKP780b77IKUQxmIDgUdEqXr3NoFKmmYUJNALGUi6hxiCDIqJMT2pVKGc6N0okFGLgPVUvEkAWNUEG2gWv-5D5sI21AHrAYFrnbHdMCkCaiMeaSUVIJy2EK0OohUl4zlbnBGLx1xLfs9Tu0ep36PU7aFjkbfvBR8Hb9KH1dnl5Z3d_CL-PbfxA_Q3EX7upk2L1tXO2g-9Krg0Gm7qDbMX2EPzeq3YXeQ73sF_gbPquqM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsQwEA3eEH3wLt7Ng28atmmzbfLobVGURfDCvpVcpsvKsrt0q-AP-Dt-hD9mknaXFUQQX9tJWiaTZIaZcwahI2Z4mGmIiYyUIMwwTQQXdcKjLDYMXAyhfbOJpNnkrZa4m0Dx-2r3UUqyxDQ4lqZeURuYrDYGvjHrdwhi7xfiUlv2I9NolrmmQS5ev38aWRTz4U3FZvJckbkkvp1aWLdxE6dxUCFpfp72-231PVXqb6DG8v__fQUtVd4nPi3NZRVNQW8NLU5wEq6j90tPKmHnw77YcBK2i33fHCuG-xmWnVznMiuwg6HlWubWlNuAuyVOBrftFsKuqr6NXRUqMbk7V3FTfn68Aj6TbzDEVhRnHef1YijL2O2jkiRlAz02Lh_Or0jVrIHoUNCCKF3n9rygkoYJNQnEUiaiziGGIKNCQmxfKmU4N0onGmTkIlMtFU8SMEYF0Saa6fV7sIWwdYHAWlbgcnpMB0yagMqYR0pJJSiHbURHi5LqisncNdTopmMOZq_j1Oo49TpO2TY6Ho8ZlDwev0qfjNYxrfb08Bfxnb-JH6L5u4tGenvdvNlFC6G3BFe0todmivwF9tGcfi06w_zA2_IXBIXzcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multidisciplinary+modeling+of+aircraft+undercarriage+landing+gear+using+data-driven+Na%C3%AFve+Bayes+and+finite+element+analysis&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Al-Haddad%2C+Luttfi+A.&rft.au=Mahdi%2C+Nibras+M.&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=4&rft.spage=3187&rft.epage=3199&rft_id=info:doi/10.1007%2Fs41939-024-00389-4&rft.externalDocID=10_1007_s41939_024_00389_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon