Efficient multidisciplinary modeling of aircraft undercarriage landing gear using data-driven Naïve Bayes and finite element analysis
Advancements in aircraft design and production necessitate exhaustive simulations of critical components, such as landing gear, to ensure optimal performance and safety. This paper presents a novel approach that combines finite element analysis (FEA) and machine learning (ML) for comprehensive simul...
Saved in:
| Published in: | Multiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 4; pp. 3187 - 3199 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.09.2024
|
| Subjects: | |
| ISSN: | 2520-8160, 2520-8179 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Advancements in aircraft design and production necessitate exhaustive simulations of critical components, such as landing gear, to ensure optimal performance and safety. This paper presents a novel approach that combines finite element analysis (FEA) and machine learning (ML) for comprehensive simulations of aircraft landing gear during the landing phase, taking into account aircraft weight and wind force. In this paper, FEA-based simulations are performed accordingly where the deformation, stress, strain, and strain energy are all computed. A duration of 4 h and 42 min was the computed time for one run of ANSYS simulation for the landing touch methodology. Depending on the simulated deformation results, the values of stress, strain, and strain energy are forecasted based on the ML Naïve Bayes (NB) model. The proposed method is highly time effective as the forecasts would endure 1 s instead of around 5 h of calculation. To strengthen and present the model’s dependability, root mean square error (RMSE) and the coefficient of determination are called out, with values corresponding to 0.9% and 1.000, respectively. Overall, it has been evidenced that FEA–ML-based analyses are far more time effective and preferable over traditional FEA-based simulations. The proposed methodology is geometrical friendly as it might be applied over any part of an aircraft, hence advancing aircraft design capabilities. |
|---|---|
| AbstractList | Advancements in aircraft design and production necessitate exhaustive simulations of critical components, such as landing gear, to ensure optimal performance and safety. This paper presents a novel approach that combines finite element analysis (FEA) and machine learning (ML) for comprehensive simulations of aircraft landing gear during the landing phase, taking into account aircraft weight and wind force. In this paper, FEA-based simulations are performed accordingly where the deformation, stress, strain, and strain energy are all computed. A duration of 4 h and 42 min was the computed time for one run of ANSYS simulation for the landing touch methodology. Depending on the simulated deformation results, the values of stress, strain, and strain energy are forecasted based on the ML Naïve Bayes (NB) model. The proposed method is highly time effective as the forecasts would endure 1 s instead of around 5 h of calculation. To strengthen and present the model’s dependability, root mean square error (RMSE) and the coefficient of determination are called out, with values corresponding to 0.9% and 1.000, respectively. Overall, it has been evidenced that FEA–ML-based analyses are far more time effective and preferable over traditional FEA-based simulations. The proposed methodology is geometrical friendly as it might be applied over any part of an aircraft, hence advancing aircraft design capabilities. |
| Author | Mahdi, Nibras M. Al-Haddad, Luttfi A. |
| Author_xml | – sequence: 1 givenname: Luttfi A. orcidid: 0000-0001-7832-1048 surname: Al-Haddad fullname: Al-Haddad, Luttfi A. email: Luttfi.a.alhaddad@uotechnology.edu.iq organization: Training and Workshops Center, University of Technology- Iraq – sequence: 2 givenname: Nibras M. orcidid: 0000-0002-8767-8361 surname: Mahdi fullname: Mahdi, Nibras M. organization: Mechanical Engineering Department, University of Technology- Iraq |
| BookMark | eNp9kE1OwzAQhS1UJErpBVj5AgE7f3aWUJUfqYINrKOJPYlcJU5lO5V6Aa7DIbgYCUUsWHQ1T5r3zei9SzKzvUVCrjm74YyJW5_yIikiFqcRY4ksovSMzOMsZpHkopj96ZxdkKX3W8ZYLJJUSDYnH-u6NsqgDbQb2mC08crsWmPBHWjXaxxlQ_uagnHKQR3oYDU6Bc4ZaJC2YPXkaBAcHfwkNQSItDN7tPQFvj73SO_hgJ6OVlobawJSbLGbfoKF9uCNvyLnNbQel79zQd4f1m-rp2jz-vi8uttEKi54iCqVyYQJDjwWXAvMAUSRScyR1bwAzMdlVWkpdaWEQkjiLC0UVFII1LpiyYLEx7vK9d47rMudM92YteSsnMosj2WWY5nlT5llOkLyH6RMgGB6GxyY9jSaHFE__rENunLbD24M7U9R38v7j_Y |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109241 crossref_primary_10_1016_j_dwt_2024_100344 crossref_primary_10_1007_s11831_025_10264_1 crossref_primary_10_1007_s41939_024_00533_0 crossref_primary_10_1007_s43621_024_00782_6 crossref_primary_10_1007_s11668_024_02075_6 crossref_primary_10_1007_s42405_025_00900_2 crossref_primary_10_1002_htj_70081 crossref_primary_10_1007_s13344_025_0041_6 crossref_primary_10_1007_s10708_025_11288_7 crossref_primary_10_3390_ma18143371 crossref_primary_10_1007_s11465_025_0821_y crossref_primary_10_1007_s41939_025_01023_7 crossref_primary_10_1007_s42107_024_01047_3 crossref_primary_10_1007_s43939_024_00175_6 crossref_primary_10_1515_eng_2024_0052 crossref_primary_10_1038_s41598_024_69462_9 crossref_primary_10_1515_cls_2024_0015 crossref_primary_10_1016_j_heliyon_2024_e34202 crossref_primary_10_1007_s41939_025_00966_1 crossref_primary_10_56294_saludcyt20251752 crossref_primary_10_1515_eng_2024_0081 crossref_primary_10_3390_app15105422 |
| Cites_doi | 10.1016/j.engfailanal.2020.105015 10.30684/etj.2023.142873.1552 10.1016/j.jnoncrysol.2022.122095 10.3390/app12010400 10.1016/j.cja.2023.03.009 10.1016/j.engappai.2023.106951 10.1016/j.tws.2023.110913 10.1109/IT-ELA57378.2022.10107922 10.1007/s40430-023-04386-5 10.3390/aerospace9080462 10.1016/j.jmsy.2023.02.012 10.1016/j.jer.2023.08.014 10.3390/aerospace9120776 10.1016/j.engstruct.2023.117188 10.1016/j.matpr.2023.01.380 10.1016/j.triboint.2023.108828 10.1016/j.ast.2022.107629 10.1016/j.ast.2023.108349 10.1111/exsy.12900 10.3390/s23136219 10.1016/S1000-9361(07)60006-5 10.3390/app10175962 10.1007/s12008-022-01165-9 10.1088/1757-899X/1105/1/012056 10.3168/jds.2019-16295 10.1016/j.egyr.2023.04.256 10.1016/j.eswa.2023.120094 10.1016/j.ijfatigue.2023.107652 10.31272/jeasd.27.5.4 10.1023/A:1007670802811 10.1002/sim.6526 10.3390/act11070182 10.1007/s00202-023-02148-z 10.1016/B978-0-323-98352-5.00001-X 10.3390/drones7020082 10.1007/s10652-009-9137-4 10.1007/s41939-023-00199-0 10.1007/s41939-023-00184-7 10.1007/s41939-022-00130-z 10.3390/sym15040880 10.1007/s41939-023-00234-0 10.1016/j.engfailanal.2023.107548 10.1017/CBO9780511844652 10.1007/s11227-023-05584-7 10.3390/app12178598 10.1007/s41939-018-0034-8 10.1016/j.aap.2023.107043 10.1016/j.dajour.2023.100233 10.3390/act12070287 10.1007/s41939-023-00176-7 10.1142/S0218488507004959 10.1007/s41939-023-00309-y |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s41939-024-00389-4 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2520-8179 |
| EndPage | 3199 |
| ExternalDocumentID | 10_1007_s41939_024_00389_4 |
| GroupedDBID | -EM 0R~ 406 AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEUYN AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c291t-bc583071a1271d7e6aa7958e6e0f19ae6307bbd88dbc7cea32549cab877eddb03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001184603000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2520-8160 |
| IngestDate | Sat Nov 29 03:23:31 EST 2025 Tue Nov 18 21:28:56 EST 2025 Fri Feb 21 02:39:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Naïve Bayes Finite element analysis Artificial intelligence Landing gear Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-bc583071a1271d7e6aa7958e6e0f19ae6307bbd88dbc7cea32549cab877eddb03 |
| ORCID | 0000-0001-7832-1048 0000-0002-8767-8361 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1007_s41939_024_00389_4 crossref_citationtrail_10_1007_s41939_024_00389_4 springer_journals_10_1007_s41939_024_00389_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design |
| PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | SilagyiDVLiuDPrediction of severity of aviation landing accidents using support vector machine modelsAccid Anal Prev.202318710704310.1016/j.aap.2023.107043 FrankETriggLHolmesGWittenIHTechnical note: Naive Bayes for regressionMach Learn20004152510.1023/A:1007670802811 YangXPrediction of shallow foundation settlement: usage of hybridized support vector regression modelMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00199-0 KunduAKAircraft design2010CambridgeCambridge University Press10.1017/CBO9780511844652 Francis MonahengLBouwer du PreezWPoleseCFailure analysis of a landing gear nose wheel fork produced in Ti6Al4V(ELI) through selective laser meltingEng Fail Anal.202315310754810.1016/j.engfailanal.2023.107548 KadarnoPBarrinayaMAManurungAORiyandwitaBWHastutySRahmawanYPradanawatiSAWidiyatiKPutraISPurbolaksonoJMechanism analysis of a main landing gear of transporting aircraft: A design learning perspectiveEng Fail Anal.202111910501510.1016/j.engfailanal.2020.105015 LiuTDriven piles’ load capacity estimation by applying comparative regression methodsMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00184-7 LuongQVJangDSHwangJHIntelligent control based on a neural network for aircraft landing gear with a magnetorheological damper in different landing scenariosAppl Sci202010.3390/app10175962 ZhangLWeiXCrack growth life calculation approach of surface cracked landing gear strut under eccentric compression load by bulging effectInt J Fatigue.202317310765210.1016/j.ijfatigue.2023.107652 DharaAMajumderAKumarNEDhanunjayMDhanumjayaLTMuruga Lal JeyanJVDesign optimization to minimize wake of wide-body transport aircraftJ Eng Res202310.1016/j.jer.2023.08.014 HusseinSAANimaMANumerical and experimental investigation of semicircular solar updraft tower system employing porous copper metal foamJ Eng Sustain Develop20232759661410.31272/jeasd.27.5.4 JiangYFengGTangHZhangJJiangBEffect of Coulomb friction on shimmy of nose landing gear under time-varying loadTribol Int.202318810882810.1016/j.triboint.2023.108828 DUNLOP Aircraft Tyres, Tires & Databook for Boeing 737 Classic, (n.d.). dunlopaircrafttyres.co.uk/aircraft/boeing-737-classic-tires/ (accessed September 8, 2023). LanceaCChicosL-AZahariaS-MPopM-APascariuISBuicanG-RStamateV-MSimulation, fabrication and testing of UAV composite landing gearAppl Sci202210.3390/app12178598 OgailiAAFHamzahMNJaberAAIntegration of machine learning (ML) and finite element analysis (FEA) for predicting the failure modes of a small horizontal composite bladeInt J Renew Energy Res (IJRER)20221221682179 LiPShaoXWuSFanWLiuBZhaoXConceptual design and preliminary test of the novel structure of steel inner core-UHPC composite box girderEng Struct.202430011718810.1016/j.engstruct.2023.117188 Al-HaddadLAJaberAAImproved UAV blade unbalance prediction based on machine learning and ReliefF supreme feature ranking methodJ Braz Soc Mech Sci Eng20234546310.1007/s40430-023-04386-5 Al-HaddadLAJaberAAAl-HaddadSAAl-MuslimYMFault diagnosis of actuator damage in UAVs using embedded recorded data and stacked machine learning modelsJ Supercomput202310.1007/s11227-023-05584-7 WangSRenJBaiRA semi-supervised adaptive discriminative discretization method improving discrimination power of regularized naive BayesExpert Syst Appl.202322512009410.1016/j.eswa.2023.120094 Al-HaddadLAJaberAAIbraheemLAl-HaddadSAIbrahimNSAbdulwahedFMEnhancing wind tunnel computational simulations of finite element analysis using machine learning-based algorithmsEng Technol J202310.30684/etj.2023.142873.1552 AloysiusSSWrobelLCLarge eddy simulation of plume dispersion behind an aircraft in the take-off phaseEnviron Fluid Mech2009945747010.1007/s10652-009-9137-4 Chaitanya KumarAAndrew JohnJRajaMVijayaPTyagiAKAbrahamAChapter 4 Genetic factor analysis for an early diagnosis of autism through machine learningData science for genomics2023Academic Press698410.1016/B978-0-323-98352-5.00001-X SinghSPRoyAKMachine learning techniques to predict the dimensionless bearing capacity of circular footing on layered sand under inclined loadsMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00176-7 MoralesMRodriguezCSalmeronASelective naive Bayes for regression based on mixtures of truncated exponentialsInternat J Unc Fuzz Knowl-Based Syst200715697716238689210.1142/S0218488507004959 RajAChadhaUChadhaAMahadevanRRSaiBRChaudharyDSelvarajSKLokeshkumarRDasSKarthikeyanBNagalakshmiRChandramohanVHadidiHWeld quality monitoring via machine learning-enabled approachesInt J Interact Design Manuf (IJIDeM)202310.1007/s12008-022-01165-9 Al-HaddadLAJaberAAHamzahMNFayadMAVibration-current data fusion and gradient boosting classifier for enhanced stator fault diagnosis in three-phase permanent magnet synchronous motorsElectr Eng202310.1007/s00202-023-02148-z WolfsonJBandyopadhyaySElidrisiMVazquez-BenitezGVockDMMusgroveDAdomaviciusGJohnsonPEO’ConnorPJA Naive Bayes machine learning approach to risk prediction using censored, time-to-event dataStat Med20153429412957337599110.1002/sim.6526 LiuXLongZPengLPrediction of Vickers hardness of amorphous alloys based on interpretable machine learningJ Non Cryst Solids202360210.1016/j.jnoncrysol.2022.122095 RomanoFSorrentinoAPelloneLMercurioUNotarnicolaLNew design paradigms and approaches for aircraft composite structuresMultiscale Multidiscip Model Exper Design20192758710.1007/s41939-018-0034-8 SunXLuoMCuiZJiZLiuHA methodology for constructing the aircraft design schemaChin J Aeronaut.20233614816710.1016/j.cja.2023.03.009 NiXYinQWeiXZhongPNieHResearch on landing stability of four-legged adaptive landing gear for multirotor UAVsAerospace202210.3390/aerospace9120776 LazzaraMChevalierMColomboMGaray GarciaJLapeyreCTesteOSurrogate modelling for an aircraft dynamic landing loads simulation using an LSTM AutoEncoder-based dimensionality reduction approachAerosp Sci Technol.202212610762910.1016/j.ast.2022.107629 van der HeideEMMVeerkampRFvan PeltMLKamphuisCAthanasiadisIDucroBJComparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattleJ Dairy Sci.20191029409942110.3168/jds.2019-16295 WuDGuHLiuHGA-based model predictive control of semi-active landing gearChin J Aeronaut.200720475410.1016/S1000-9361(07)60006-5 HsuT-HChangY-JHsuH-KChenT-THwangP-WPredicting the remaining useful life of landing gear with prognostics and health management (PHM)Aerospace202210.3390/aerospace9080462 KangB-HJoB-HKimB-GHwangJ-HChoiS-BLinear and nonlinear models for drop simulation of an aircraft landing gear system with MR dampersActuators202310.3390/act12070287 MohammedSAAl-HaddadLAAlaweeWHDhahadHAJaberAAAl-HaddadSAForecasting the productivity of a solar distiller enhanced with an inclined absorber plate using stochastic gradient descent in artificial neural networksMultiscale Multidiscipl Model Exper Design202310.1007/s41939-023-00309-y AristaRZhengXLuJMasFAn ontology-based engineering system to support aircraft manufacturing system designJ Manuf Syst.20236827028810.1016/j.jmsy.2023.02.012 Al-HaddadLAJaberAAAn intelligent fault diagnosis approach for multirotor UAVs based on deep neural network of multi-resolution transform featuresDrones202378210.3390/drones7020082 Al-Haddad LA, Jaber A (2022a) Applications of Machine Learning Techniques for Fault Diagnosis of UAVs. VishwakarmaMKesswaniNA new two-phase intrusion detection system with Naïve Bayes machine learning for data classification and elliptic envelop method for anomaly detectionDecision Anal J.2023710023310.1016/j.dajour.2023.100233 GuoWWangGWangCWangYDistribution network topology identification based on gradient boosting decision tree and attribute weighted naive BayesEnergy Reports.2023972773610.1016/j.egyr.2023.04.256 LinLTongCGuoFFuSLvYHeWA self-attention integrated learning model for landing gear performance predictionSensors202310.3390/s23136219 Muhsen AA , Al-Malik AAR, Attiya BH, Al-Hardanee OF, Abdalazize KA (2021) Modal analysis of Kaplan turbine in Haditha hydropower plant using ANSYS and SolidWorks. In: IOP Conf Ser Mater Sci Eng, IOP Publishing. p 012056. OkelloJLEl-BabAMRFYoshinoMEl-HofyHAModelling of heat-affected zone (HAZ) in CO2 laser micromachining of aluminium-coated polymethyl methacrylate (PMMA) using adaptive neuro-fuzzy inference system (ANFIS)Multiscale Multidiscip Model Exper Design202310.1007/s41939-023-00234-0 SharmaNThakurMSUpadhyaASihagPSoft computing techniques for assessment of strength of concrete with marble powderMultiscale Multidiscip Model Exper Design2023 6819610.1007/s41939-022-00130-z ShenKZhaoDFault diagnosis for aircraft hydraulic systems via one-dimensional multichannel convolution neural networkActuators202210.3390/act11070182 Al-Haddad LA, Jaber AA (2022b) An Intelligent Quadcopter Unbalance Classification Method Based on Stochastic Gradient Descent Logistic Regression, in: 2022 3rd Information Technology To Enhance E-Learning and Other Application (IT-ELA). p 152–156. https://doi.org/10.1109/IT-ELA57378.2022.10107922. SaporitoMDa RonchABartoliNDefoortSRobust multidisciplinary analysis and optimization for conceptual design of flexible aircraft under dynamic aeroelastic constraintsAerosp Sci Technol.202313810834910.1016/j.ast.2023.108349 GuptaASoniVShahDLakdawalaAGenerative design of main landing gear for a remote-controlled aircraftMater Today Proc202310.1016/j.matpr.2023.01.380 CarneiroDGuimaraesMCarvalhoMNovaisPUsing meta-learning to predict performance metrics in machine learning problemsExpert Syst20234010.1111/exsy.12900 FuYFuHZhangSA novel safe life extension method for aircraft main landing gear based on statistical inference of test life data and outfield life dataSymmetry (Basel)202310.3390/sym15040880 ChampasakPPanagantNPholdeeNBureeratSRajendranPYildizARGrid-based many-objective optimiser for aircraft conceptual design with multiple aircraft configurationsEng Appl Artif Intell.202312610695110.1016/j.engappai.2023.106951 ZhangYTongJGuoQGuoJLiuXChenLHierarchical multiscale analysis for 3D woven composi R Arista (389_CR10) 2023; 68 A Dhara (389_CR14) 2023 X Sun (389_CR48) 2023; 36 B-H Kang (389_CR25) 2023 AK Kundu (389_CR26) 2010 C Lancea (389_CR27) 2022 P Kadarno (389_CR24) 2021; 119 N Sharma (389_CR44) 2023; 6 P Li (389_CR29) 2024; 300 SP Singh (389_CR47) 2023 L Lin (389_CR30) 2023 LA Al-Haddad (389_CR5) 2023 Q-V Luong (389_CR34) 2022 K Shen (389_CR45) 2022 T-H Hsu (389_CR21) 2022 389_CR37 L Francis Monaheng (389_CR16) 2023; 153 E Frank (389_CR17) 2000; 41 M Saporito (389_CR43) 2023; 138 L Zhang (389_CR55) 2023; 173 LA Al-Haddad (389_CR1) 2023; 45 M Vishwakarma (389_CR50) 2023; 7 SAA Hussein (389_CR22) 2023; 27 P Champasak (389_CR13) 2023; 126 DV Silagyi (389_CR46) 2023; 187 SA Mohammed (389_CR35) 2023 D Carneiro (389_CR11) 2023; 40 A Chaitanya Kumar (389_CR12) 2023 X Yang (389_CR54) 2023 EMM van der Heide (389_CR49) 2019; 102 W Guo (389_CR19) 2023; 9 LA Al-Haddad (389_CR4) 2023 A Raj (389_CR41) 2023 SA Amin (389_CR9) 2019; 23 Y Jiang (389_CR23) 2023; 188 JL Okello (389_CR40) 2023 389_CR6 389_CR7 SS Aloysius (389_CR8) 2009; 9 M Morales (389_CR36) 2007; 15 T Liu (389_CR31) 2023 QV Luong (389_CR33) 2020 AAF Ogaili (389_CR39) 2022; 12 389_CR15 M Lazzara (389_CR28) 2022; 126 Y Zhang (389_CR56) 2023; 189 J Wolfson (389_CR52) 2015; 34 LA Al-Haddad (389_CR3) 2023 X Liu (389_CR32) 2023; 602 F Romano (389_CR42) 2019; 2 D Wu (389_CR53) 2007; 20 LA Al-Haddad (389_CR2) 2023; 7 X Ni (389_CR38) 2022 A Gupta (389_CR20) 2023 Y Fu (389_CR18) 2023 S Wang (389_CR51) 2023; 225 |
| References_xml | – reference: ShenKZhaoDFault diagnosis for aircraft hydraulic systems via one-dimensional multichannel convolution neural networkActuators202210.3390/act11070182 – reference: VishwakarmaMKesswaniNA new two-phase intrusion detection system with Naïve Bayes machine learning for data classification and elliptic envelop method for anomaly detectionDecision Anal J.2023710023310.1016/j.dajour.2023.100233 – reference: LiPShaoXWuSFanWLiuBZhaoXConceptual design and preliminary test of the novel structure of steel inner core-UHPC composite box girderEng Struct.202430011718810.1016/j.engstruct.2023.117188 – reference: FrankETriggLHolmesGWittenIHTechnical note: Naive Bayes for regressionMach Learn20004152510.1023/A:1007670802811 – reference: WolfsonJBandyopadhyaySElidrisiMVazquez-BenitezGVockDMMusgroveDAdomaviciusGJohnsonPEO’ConnorPJA Naive Bayes machine learning approach to risk prediction using censored, time-to-event dataStat Med20153429412957337599110.1002/sim.6526 – reference: DharaAMajumderAKumarNEDhanunjayMDhanumjayaLTMuruga Lal JeyanJVDesign optimization to minimize wake of wide-body transport aircraftJ Eng Res202310.1016/j.jer.2023.08.014 – reference: DUNLOP Aircraft Tyres, Tires & Databook for Boeing 737 Classic, (n.d.). dunlopaircrafttyres.co.uk/aircraft/boeing-737-classic-tires/ (accessed September 8, 2023). – reference: AminSAHassanAYNumerical and experimental study of shape effect behavior of nitinol wireJ Eng Sustain Develop201923111 – reference: KangB-HJoB-HKimB-GHwangJ-HChoiS-BLinear and nonlinear models for drop simulation of an aircraft landing gear system with MR dampersActuators202310.3390/act12070287 – reference: OkelloJLEl-BabAMRFYoshinoMEl-HofyHAModelling of heat-affected zone (HAZ) in CO2 laser micromachining of aluminium-coated polymethyl methacrylate (PMMA) using adaptive neuro-fuzzy inference system (ANFIS)Multiscale Multidiscip Model Exper Design202310.1007/s41939-023-00234-0 – reference: RajAChadhaUChadhaAMahadevanRRSaiBRChaudharyDSelvarajSKLokeshkumarRDasSKarthikeyanBNagalakshmiRChandramohanVHadidiHWeld quality monitoring via machine learning-enabled approachesInt J Interact Design Manuf (IJIDeM)202310.1007/s12008-022-01165-9 – reference: MohammedSAAl-HaddadLAAlaweeWHDhahadHAJaberAAAl-HaddadSAForecasting the productivity of a solar distiller enhanced with an inclined absorber plate using stochastic gradient descent in artificial neural networksMultiscale Multidiscipl Model Exper Design202310.1007/s41939-023-00309-y – reference: Al-Haddad LA, Jaber AA (2022b) An Intelligent Quadcopter Unbalance Classification Method Based on Stochastic Gradient Descent Logistic Regression, in: 2022 3rd Information Technology To Enhance E-Learning and Other Application (IT-ELA). p 152–156. https://doi.org/10.1109/IT-ELA57378.2022.10107922. – reference: GuptaASoniVShahDLakdawalaAGenerative design of main landing gear for a remote-controlled aircraftMater Today Proc202310.1016/j.matpr.2023.01.380 – reference: AloysiusSSWrobelLCLarge eddy simulation of plume dispersion behind an aircraft in the take-off phaseEnviron Fluid Mech2009945747010.1007/s10652-009-9137-4 – reference: Chaitanya KumarAAndrew JohnJRajaMVijayaPTyagiAKAbrahamAChapter 4 Genetic factor analysis for an early diagnosis of autism through machine learningData science for genomics2023Academic Press698410.1016/B978-0-323-98352-5.00001-X – reference: HsuT-HChangY-JHsuH-KChenT-THwangP-WPredicting the remaining useful life of landing gear with prognostics and health management (PHM)Aerospace202210.3390/aerospace9080462 – reference: FuYFuHZhangSA novel safe life extension method for aircraft main landing gear based on statistical inference of test life data and outfield life dataSymmetry (Basel)202310.3390/sym15040880 – reference: YangXPrediction of shallow foundation settlement: usage of hybridized support vector regression modelMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00199-0 – reference: OgailiAAFHamzahMNJaberAAIntegration of machine learning (ML) and finite element analysis (FEA) for predicting the failure modes of a small horizontal composite bladeInt J Renew Energy Res (IJRER)20221221682179 – reference: van der HeideEMMVeerkampRFvan PeltMLKamphuisCAthanasiadisIDucroBJComparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattleJ Dairy Sci.20191029409942110.3168/jds.2019-16295 – reference: ChampasakPPanagantNPholdeeNBureeratSRajendranPYildizARGrid-based many-objective optimiser for aircraft conceptual design with multiple aircraft configurationsEng Appl Artif Intell.202312610695110.1016/j.engappai.2023.106951 – reference: Al-HaddadLAJaberAAAn intelligent fault diagnosis approach for multirotor UAVs based on deep neural network of multi-resolution transform featuresDrones202378210.3390/drones7020082 – reference: ZhangYTongJGuoQGuoJLiuXChenLHierarchical multiscale analysis for 3D woven composite leaf spring landing gearThin-Walled Structures.202318911091310.1016/j.tws.2023.110913 – reference: KadarnoPBarrinayaMAManurungAORiyandwitaBWHastutySRahmawanYPradanawatiSAWidiyatiKPutraISPurbolaksonoJMechanism analysis of a main landing gear of transporting aircraft: A design learning perspectiveEng Fail Anal.202111910501510.1016/j.engfailanal.2020.105015 – reference: LuongQVJangDSHwangJHIntelligent control based on a neural network for aircraft landing gear with a magnetorheological damper in different landing scenariosAppl Sci202010.3390/app10175962 – reference: RomanoFSorrentinoAPelloneLMercurioUNotarnicolaLNew design paradigms and approaches for aircraft composite structuresMultiscale Multidiscip Model Exper Design20192758710.1007/s41939-018-0034-8 – reference: Al-Haddad LA, Jaber A (2022a) Applications of Machine Learning Techniques for Fault Diagnosis of UAVs. – reference: Al-HaddadLAJaberAAImproved UAV blade unbalance prediction based on machine learning and ReliefF supreme feature ranking methodJ Braz Soc Mech Sci Eng20234546310.1007/s40430-023-04386-5 – reference: LinLTongCGuoFFuSLvYHeWA self-attention integrated learning model for landing gear performance predictionSensors202310.3390/s23136219 – reference: Muhsen AA , Al-Malik AAR, Attiya BH, Al-Hardanee OF, Abdalazize KA (2021) Modal analysis of Kaplan turbine in Haditha hydropower plant using ANSYS and SolidWorks. In: IOP Conf Ser Mater Sci Eng, IOP Publishing. p 012056. – reference: Al-HaddadLAJaberAAHamzahMNFayadMAVibration-current data fusion and gradient boosting classifier for enhanced stator fault diagnosis in three-phase permanent magnet synchronous motorsElectr Eng202310.1007/s00202-023-02148-z – reference: AristaRZhengXLuJMasFAn ontology-based engineering system to support aircraft manufacturing system designJ Manuf Syst.20236827028810.1016/j.jmsy.2023.02.012 – reference: LiuTDriven piles’ load capacity estimation by applying comparative regression methodsMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00184-7 – reference: MoralesMRodriguezCSalmeronASelective naive Bayes for regression based on mixtures of truncated exponentialsInternat J Unc Fuzz Knowl-Based Syst200715697716238689210.1142/S0218488507004959 – reference: GuoWWangGWangCWangYDistribution network topology identification based on gradient boosting decision tree and attribute weighted naive BayesEnergy Reports.2023972773610.1016/j.egyr.2023.04.256 – reference: SilagyiDVLiuDPrediction of severity of aviation landing accidents using support vector machine modelsAccid Anal Prev.202318710704310.1016/j.aap.2023.107043 – reference: SaporitoMDa RonchABartoliNDefoortSRobust multidisciplinary analysis and optimization for conceptual design of flexible aircraft under dynamic aeroelastic constraintsAerosp Sci Technol.202313810834910.1016/j.ast.2023.108349 – reference: WuDGuHLiuHGA-based model predictive control of semi-active landing gearChin J Aeronaut.200720475410.1016/S1000-9361(07)60006-5 – reference: HusseinSAANimaMANumerical and experimental investigation of semicircular solar updraft tower system employing porous copper metal foamJ Eng Sustain Develop20232759661410.31272/jeasd.27.5.4 – reference: SinghSPRoyAKMachine learning techniques to predict the dimensionless bearing capacity of circular footing on layered sand under inclined loadsMultiscale Multidiscip Model Exper Design202310.1007/s41939-023-00176-7 – reference: ZhangLWeiXCrack growth life calculation approach of surface cracked landing gear strut under eccentric compression load by bulging effectInt J Fatigue.202317310765210.1016/j.ijfatigue.2023.107652 – reference: Francis MonahengLBouwer du PreezWPoleseCFailure analysis of a landing gear nose wheel fork produced in Ti6Al4V(ELI) through selective laser meltingEng Fail Anal.202315310754810.1016/j.engfailanal.2023.107548 – reference: LiuXLongZPengLPrediction of Vickers hardness of amorphous alloys based on interpretable machine learningJ Non Cryst Solids202360210.1016/j.jnoncrysol.2022.122095 – reference: JiangYFengGTangHZhangJJiangBEffect of Coulomb friction on shimmy of nose landing gear under time-varying loadTribol Int.202318810882810.1016/j.triboint.2023.108828 – reference: KunduAKAircraft design2010CambridgeCambridge University Press10.1017/CBO9780511844652 – reference: CarneiroDGuimaraesMCarvalhoMNovaisPUsing meta-learning to predict performance metrics in machine learning problemsExpert Syst20234010.1111/exsy.12900 – reference: NiXYinQWeiXZhongPNieHResearch on landing stability of four-legged adaptive landing gear for multirotor UAVsAerospace202210.3390/aerospace9120776 – reference: Al-HaddadLAJaberAAAl-HaddadSAAl-MuslimYMFault diagnosis of actuator damage in UAVs using embedded recorded data and stacked machine learning modelsJ Supercomput202310.1007/s11227-023-05584-7 – reference: Al-HaddadLAJaberAAIbraheemLAl-HaddadSAIbrahimNSAbdulwahedFMEnhancing wind tunnel computational simulations of finite element analysis using machine learning-based algorithmsEng Technol J202310.30684/etj.2023.142873.1552 – reference: LuongQ-VJoB-HHwangJ-HJangD-SA supervised neural network control for magnetorheological damper in an aircraft landing gearAppl Sci202210.3390/app12010400 – reference: LanceaCChicosL-AZahariaS-MPopM-APascariuISBuicanG-RStamateV-MSimulation, fabrication and testing of UAV composite landing gearAppl Sci202210.3390/app12178598 – reference: SharmaNThakurMSUpadhyaASihagPSoft computing techniques for assessment of strength of concrete with marble powderMultiscale Multidiscip Model Exper Design2023 6819610.1007/s41939-022-00130-z – reference: WangSRenJBaiRA semi-supervised adaptive discriminative discretization method improving discrimination power of regularized naive BayesExpert Syst Appl.202322512009410.1016/j.eswa.2023.120094 – reference: SunXLuoMCuiZJiZLiuHA methodology for constructing the aircraft design schemaChin J Aeronaut.20233614816710.1016/j.cja.2023.03.009 – reference: LazzaraMChevalierMColomboMGaray GarciaJLapeyreCTesteOSurrogate modelling for an aircraft dynamic landing loads simulation using an LSTM AutoEncoder-based dimensionality reduction approachAerosp Sci Technol.202212610762910.1016/j.ast.2022.107629 – volume: 119 start-page: 105015 year: 2021 ident: 389_CR24 publication-title: Eng Fail Anal. doi: 10.1016/j.engfailanal.2020.105015 – year: 2023 ident: 389_CR3 publication-title: Eng Technol J doi: 10.30684/etj.2023.142873.1552 – volume: 602 year: 2023 ident: 389_CR32 publication-title: J Non Cryst Solids doi: 10.1016/j.jnoncrysol.2022.122095 – year: 2022 ident: 389_CR34 publication-title: Appl Sci doi: 10.3390/app12010400 – volume: 36 start-page: 148 year: 2023 ident: 389_CR48 publication-title: Chin J Aeronaut. doi: 10.1016/j.cja.2023.03.009 – volume: 126 start-page: 106951 year: 2023 ident: 389_CR13 publication-title: Eng Appl Artif Intell. doi: 10.1016/j.engappai.2023.106951 – volume: 12 start-page: 2168 year: 2022 ident: 389_CR39 publication-title: Int J Renew Energy Res (IJRER) – volume: 189 start-page: 110913 year: 2023 ident: 389_CR56 publication-title: Thin-Walled Structures. doi: 10.1016/j.tws.2023.110913 – ident: 389_CR7 doi: 10.1109/IT-ELA57378.2022.10107922 – volume: 45 start-page: 463 year: 2023 ident: 389_CR1 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-023-04386-5 – ident: 389_CR6 – year: 2022 ident: 389_CR21 publication-title: Aerospace doi: 10.3390/aerospace9080462 – volume: 68 start-page: 270 year: 2023 ident: 389_CR10 publication-title: J Manuf Syst. doi: 10.1016/j.jmsy.2023.02.012 – ident: 389_CR15 – year: 2023 ident: 389_CR14 publication-title: J Eng Res doi: 10.1016/j.jer.2023.08.014 – year: 2022 ident: 389_CR38 publication-title: Aerospace doi: 10.3390/aerospace9120776 – volume: 300 start-page: 117188 year: 2024 ident: 389_CR29 publication-title: Eng Struct. doi: 10.1016/j.engstruct.2023.117188 – year: 2023 ident: 389_CR20 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2023.01.380 – volume: 188 start-page: 108828 year: 2023 ident: 389_CR23 publication-title: Tribol Int. doi: 10.1016/j.triboint.2023.108828 – volume: 126 start-page: 107629 year: 2022 ident: 389_CR28 publication-title: Aerosp Sci Technol. doi: 10.1016/j.ast.2022.107629 – volume: 138 start-page: 108349 year: 2023 ident: 389_CR43 publication-title: Aerosp Sci Technol. doi: 10.1016/j.ast.2023.108349 – volume: 40 year: 2023 ident: 389_CR11 publication-title: Expert Syst doi: 10.1111/exsy.12900 – year: 2023 ident: 389_CR30 publication-title: Sensors doi: 10.3390/s23136219 – volume: 20 start-page: 47 year: 2007 ident: 389_CR53 publication-title: Chin J Aeronaut. doi: 10.1016/S1000-9361(07)60006-5 – year: 2020 ident: 389_CR33 publication-title: Appl Sci doi: 10.3390/app10175962 – year: 2023 ident: 389_CR41 publication-title: Int J Interact Design Manuf (IJIDeM) doi: 10.1007/s12008-022-01165-9 – ident: 389_CR37 doi: 10.1088/1757-899X/1105/1/012056 – volume: 102 start-page: 9409 year: 2019 ident: 389_CR49 publication-title: J Dairy Sci. doi: 10.3168/jds.2019-16295 – volume: 9 start-page: 727 year: 2023 ident: 389_CR19 publication-title: Energy Reports. doi: 10.1016/j.egyr.2023.04.256 – volume: 225 start-page: 120094 year: 2023 ident: 389_CR51 publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2023.120094 – volume: 173 start-page: 107652 year: 2023 ident: 389_CR55 publication-title: Int J Fatigue. doi: 10.1016/j.ijfatigue.2023.107652 – volume: 27 start-page: 596 year: 2023 ident: 389_CR22 publication-title: J Eng Sustain Develop doi: 10.31272/jeasd.27.5.4 – volume: 41 start-page: 5 year: 2000 ident: 389_CR17 publication-title: Mach Learn doi: 10.1023/A:1007670802811 – volume: 34 start-page: 2941 year: 2015 ident: 389_CR52 publication-title: Stat Med doi: 10.1002/sim.6526 – year: 2022 ident: 389_CR45 publication-title: Actuators doi: 10.3390/act11070182 – year: 2023 ident: 389_CR5 publication-title: Electr Eng doi: 10.1007/s00202-023-02148-z – start-page: 69 volume-title: Data science for genomics year: 2023 ident: 389_CR12 doi: 10.1016/B978-0-323-98352-5.00001-X – volume: 7 start-page: 82 year: 2023 ident: 389_CR2 publication-title: Drones doi: 10.3390/drones7020082 – volume: 9 start-page: 457 year: 2009 ident: 389_CR8 publication-title: Environ Fluid Mech doi: 10.1007/s10652-009-9137-4 – year: 2023 ident: 389_CR54 publication-title: Multiscale Multidiscip Model Exper Design doi: 10.1007/s41939-023-00199-0 – volume: 23 start-page: 1 year: 2019 ident: 389_CR9 publication-title: J Eng Sustain Develop – year: 2023 ident: 389_CR31 publication-title: Multiscale Multidiscip Model Exper Design doi: 10.1007/s41939-023-00184-7 – volume: 6 start-page: 81 year: 2023 ident: 389_CR44 publication-title: Multiscale Multidiscip Model Exper Design doi: 10.1007/s41939-022-00130-z – year: 2023 ident: 389_CR18 publication-title: Symmetry (Basel) doi: 10.3390/sym15040880 – year: 2023 ident: 389_CR40 publication-title: Multiscale Multidiscip Model Exper Design doi: 10.1007/s41939-023-00234-0 – volume: 153 start-page: 107548 year: 2023 ident: 389_CR16 publication-title: Eng Fail Anal. doi: 10.1016/j.engfailanal.2023.107548 – volume-title: Aircraft design year: 2010 ident: 389_CR26 doi: 10.1017/CBO9780511844652 – year: 2023 ident: 389_CR4 publication-title: J Supercomput doi: 10.1007/s11227-023-05584-7 – year: 2022 ident: 389_CR27 publication-title: Appl Sci doi: 10.3390/app12178598 – volume: 2 start-page: 75 year: 2019 ident: 389_CR42 publication-title: Multiscale Multidiscip Model Exper Design doi: 10.1007/s41939-018-0034-8 – volume: 187 start-page: 107043 year: 2023 ident: 389_CR46 publication-title: Accid Anal Prev. doi: 10.1016/j.aap.2023.107043 – volume: 7 start-page: 100233 year: 2023 ident: 389_CR50 publication-title: Decision Anal J. doi: 10.1016/j.dajour.2023.100233 – year: 2023 ident: 389_CR25 publication-title: Actuators doi: 10.3390/act12070287 – year: 2023 ident: 389_CR47 publication-title: Multiscale Multidiscip Model Exper Design doi: 10.1007/s41939-023-00176-7 – volume: 15 start-page: 697 year: 2007 ident: 389_CR36 publication-title: Internat J Unc Fuzz Knowl-Based Syst doi: 10.1142/S0218488507004959 – year: 2023 ident: 389_CR35 publication-title: Multiscale Multidiscipl Model Exper Design doi: 10.1007/s41939-023-00309-y |
| SSID | ssj0002734780 ssib042110740 |
| Score | 2.3889434 |
| Snippet | Advancements in aircraft design and production necessitate exhaustive simulations of critical components, such as landing gear, to ensure optimal performance... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 3187 |
| SubjectTerms | Characterization and Evaluation of Materials Engineering Mathematical Applications in the Physical Sciences Mechanical Engineering Numerical and Computational Physics Original Paper Simulation Solid Mechanics |
| Title | Efficient multidisciplinary modeling of aircraft undercarriage landing gear using data-driven Naïve Bayes and finite element analysis |
| URI | https://link.springer.com/article/10.1007/s41939-024-00389-4 |
| Volume | 7 |
| WOSCitedRecordID | wos001184603000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2520-8179 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: P5Z dateStart: 20240701 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2520-8179 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: M7S dateStart: 20240701 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2520-8179 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: BENPR dateStart: 20240701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2520-8179 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: RSV dateStart: 20180301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7G-2IM3Xcgmm2T3qNLiqYgvegv7mJRKaSWtBf-Af8cf4R9zd5OUFqSg12SyhJ03M_MNQhfM8DDXkBAZKUGYYZoILmLCozwxDFwOof2yibTT4d2uuK-GwsZ1t3tdkvSWejbsxmysIYj1KcSVs-zBq2jNujvu1PHh8aWWIuZTmgrB5LUCcEn9CrUwtrkSp0lQTc_8fuyih1osj3qv097-3__uoK0qysTXpVjsohUY7qHNOezBffTZ8uAR1udg31Q4P56L_X4cS4ZHOZb9Qhcyn2A3blZoWViR7QEelPMwuGdVBbvu-R523abEFM5-4o78_poCvpEfMMaWFOd9F91iKNvV7aMSDOUAPbdbT7d3pFrKQHQo6IQoHXNrF6ikYUpNComUqYg5JBDkVEhI7EulDOdG6VSDjFwGqqXiaQrGqCA6RI3haAhHCNtQB6wEBa52x3TApAmoTHiklFSCcmgiWjMi0xViuVucMchmWMv-jjN7x5m_44w10eXsm7cSr2Mp9VXNu6zS3fES8uO_kZ-gjdCz33WknaLGpHiHM7Sup5P-uDj3QvsD68bnqA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBu3g3D75poGmzNnlUmSjOITrFt5LL6ZiMKd0U_AP-HX-Ef8wkbccGIuhrexpKcnIunO98B6FDZniYaYiJjJQgzDBNBBd1wqMsNgxcDqH9sImk1eKPj-KmbAobVGj3qiTpLfWo2Y3ZWEMQ61OIK2fZhafRDLMeywH5bu8eKi1iPqUpGUyeSgKXxI9QC-s2V-I0DsrumZ-XnfRQk-VR73XOl_73v8tosYwy8UmhFitoCvqraGGMe3ANfTQ8eYT1OdiDCsfbc7Gfj2PF8HOGZTfXucyG2LWb5VrmVmU7gHtFPwzu2KuCHXq-gx3alJjc2U_ckl-fb4BP5TsMsBXFWddFtxgKuLp9VJChrKP780b77IKUQxmIDgUdEqXr3NoFKmmYUJNALGUi6hxiCDIqJMT2pVKGc6N0okFGLgPVUvEkAWNUEG2gWv-5D5sI21AHrAYFrnbHdMCkCaiMeaSUVIJy2EK0OohUl4zlbnBGLx1xLfs9Tu0ep36PU7aFjkbfvBR8Hb9KH1dnl5Z3d_CL-PbfxA_Q3EX7upk2L1tXO2g-9Krg0Gm7qDbMX2EPzeq3YXeQ73sF_gbPquqM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsQwEA3eEH3wLt7Ng28atmmzbfLobVGURfDCvpVcpsvKsrt0q-AP-Dt-hD9mknaXFUQQX9tJWiaTZIaZcwahI2Z4mGmIiYyUIMwwTQQXdcKjLDYMXAyhfbOJpNnkrZa4m0Dx-2r3UUqyxDQ4lqZeURuYrDYGvjHrdwhi7xfiUlv2I9NolrmmQS5ev38aWRTz4U3FZvJckbkkvp1aWLdxE6dxUCFpfp72-231PVXqb6DG8v__fQUtVd4nPi3NZRVNQW8NLU5wEq6j90tPKmHnw77YcBK2i33fHCuG-xmWnVznMiuwg6HlWubWlNuAuyVOBrftFsKuqr6NXRUqMbk7V3FTfn68Aj6TbzDEVhRnHef1YijL2O2jkiRlAz02Lh_Or0jVrIHoUNCCKF3n9rygkoYJNQnEUiaiziGGIKNCQmxfKmU4N0onGmTkIlMtFU8SMEYF0Saa6fV7sIWwdYHAWlbgcnpMB0yagMqYR0pJJSiHbURHi5LqisncNdTopmMOZq_j1Oo49TpO2TY6Ho8ZlDwev0qfjNYxrfb08Bfxnb-JH6L5u4tGenvdvNlFC6G3BFe0todmivwF9tGcfi06w_zA2_IXBIXzcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+multidisciplinary+modeling+of+aircraft+undercarriage+landing+gear+using+data-driven+Na%C3%AFve+Bayes+and+finite+element+analysis&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Al-Haddad%2C+Luttfi+A.&rft.au=Mahdi%2C+Nibras+M.&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=4&rft.spage=3187&rft.epage=3199&rft_id=info:doi/10.1007%2Fs41939-024-00389-4&rft.externalDocID=10_1007_s41939_024_00389_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |