A 73% Peak PDP Single-Photon Avalanche Diode Implemented in 110 nm CIS Technology With Doping Compensation
In this article, we present 10 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m diameter SPADs fabricated in 110 nm CIS technology based on an N + /HVPW junction, with enhanced sensitivity at short wavelengths. To reduce tunneling noise du...
Uloženo v:
| Vydáno v: | IEEE journal of selected topics in quantum electronics Ročník 30; číslo 1: Single-Photon Technologies and Applications; s. 1 - 10 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1077-260X, 1558-4542 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, we present 10 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m diameter SPADs fabricated in 110 nm CIS technology based on an N + /HVPW junction, with enhanced sensitivity at short wavelengths. To reduce tunneling noise due to the highly-doped layers in the process, a doping compensation technique is used, which allows to adjust the doping profile of the HVPW. Thanks to this technique, DCR is reduced by a factor of 24 at 2 V excess bias voltage when compared to non-compensated devices. Furthermore, the maximum achievable PDP is enhanced by 49% thanks to the much lower DCR leading to a PDP of 73%, the highest ever reported at 440 nm, while the DCR is 12.5 cps/<inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m 2 , all at the 5 V excess bias. Since the junction is formed very close to the surface, the SPAD has excellent sensitivity in the UV spectrum, with a PDP of 43% at a wavelength of 350 nm. The proposed SPAD also achieves a PDP of 7% with a timing jitter of 68 ps at 850 nm at 5 V excess bias, which makes the device very useful for RGB-Z (RGB-D) sensors. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1077-260X 1558-4542 |
| DOI: | 10.1109/JSTQE.2023.3288674 |