Ultra-Wide-Scanning Conformal Heterogeneous Phased Array Antenna Based on Deep Deterministic Policy Gradient Algorithm
This article investigates the pattern synthesis of the conformal phased array antenna (PAA) by using the deep deterministic policy gradient (DDPG) algorithm, and a nearly full solid angle for beam steering is realized. The beam steering capability of the planar and conformal PAAs is theoretically co...
Saved in:
| Published in: | IEEE transactions on antennas and propagation Vol. 70; no. 7; pp. 5066 - 5077 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-926X, 1558-2221 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article investigates the pattern synthesis of the conformal phased array antenna (PAA) by using the deep deterministic policy gradient (DDPG) algorithm, and a nearly full solid angle for beam steering is realized. The beam steering capability of the planar and conformal PAAs is theoretically compared at first, and a conclusion is obtained that conformed to the conical-and-cylindrical structure can help to achieve ultrawide-angle beam steering. Next, a typical deep reinforcement learning algorithm, which is the DDPG algorithm, is utilized to deal with the fast beam steering problem of the conformal heterogeneous PAA. By virtue of the strong fitting ability of the DDPG algorithm for high-dimensional continuous nonlinear problems, the performance of fast beam steering is achieved within a wide-angle range within (−150°, 150°). Finally, a prototype of <inline-formula> <tex-math notation="LaTeX">1\times17 </tex-math></inline-formula> conformal PAA is fabricated for measurement and verification, and the measured results are in good agreement with the simulation results. |
|---|---|
| AbstractList | This article investigates the pattern synthesis of the conformal phased array antenna (PAA) by using the deep deterministic policy gradient (DDPG) algorithm, and a nearly full solid angle for beam steering is realized. The beam steering capability of the planar and conformal PAAs is theoretically compared at first, and a conclusion is obtained that conformed to the conical-and-cylindrical structure can help to achieve ultrawide-angle beam steering. Next, a typical deep reinforcement learning algorithm, which is the DDPG algorithm, is utilized to deal with the fast beam steering problem of the conformal heterogeneous PAA. By virtue of the strong fitting ability of the DDPG algorithm for high-dimensional continuous nonlinear problems, the performance of fast beam steering is achieved within a wide-angle range within (−150°, 150°). Finally, a prototype of <inline-formula> <tex-math notation="LaTeX">1\times17 </tex-math></inline-formula> conformal PAA is fabricated for measurement and verification, and the measured results are in good agreement with the simulation results. This article investigates the pattern synthesis of the conformal phased array antenna (PAA) by using the deep deterministic policy gradient (DDPG) algorithm, and a nearly full solid angle for beam steering is realized. The beam steering capability of the planar and conformal PAAs is theoretically compared at first, and a conclusion is obtained that conformed to the conical-and-cylindrical structure can help to achieve ultrawide-angle beam steering. Next, a typical deep reinforcement learning algorithm, which is the DDPG algorithm, is utilized to deal with the fast beam steering problem of the conformal heterogeneous PAA. By virtue of the strong fitting ability of the DDPG algorithm for high-dimensional continuous nonlinear problems, the performance of fast beam steering is achieved within a wide-angle range within (−150°, 150°). Finally, a prototype of [Formula Omitted] conformal PAA is fabricated for measurement and verification, and the measured results are in good agreement with the simulation results. |
| Author | Li, Maokun Cao, Kaiqi Zhang, Pengyu Li, Yan Zhang, Binchao Jin, Cheng Lv, Qihao |
| Author_xml | – sequence: 1 givenname: Binchao orcidid: 0000-0003-4241-4984 surname: Zhang fullname: Zhang, Binchao email: zhangbinchao@bit.edu.cn organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Cheng orcidid: 0000-0002-5180-0484 surname: Jin fullname: Jin, Cheng email: jincheng@bit.edu.cn organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Kaiqi orcidid: 0000-0002-5379-8752 surname: Cao fullname: Cao, Kaiqi organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Qihao orcidid: 0000-0003-3063-6563 surname: Lv fullname: Lv, Qihao organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Pengyu orcidid: 0000-0002-4385-0764 surname: Zhang fullname: Zhang, Pengyu organization: Beijing Zhongan Satcom Technology Company Ltd., Beijing, China – sequence: 6 givenname: Yan orcidid: 0000-0001-9562-9634 surname: Li fullname: Li, Yan organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 7 givenname: Maokun orcidid: 0000-0002-7258-6413 surname: Li fullname: Li, Maokun email: maokunli@tsinghua.edu.cn organization: Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), State Key Laboratory on Microwave and Digital Communications, Tsinghua University, Beijing, China |
| BookMark | eNp9kMFOAjEQQBujiYDeTbw08bzYdrfd7nFFBRMSSYTobVN2ByhZWmyLCX9vEeLBg5eZzGTeTOZ10bmxBhC6oaRPKSnup-Wkzwhj_ZRykgt2hjqUc5kwxug56hBCZVIw8XGJut6vY5nJLOugr1kbnEredQPJW62M0WaJB9YsrNuoFo8ggLNLMGB3Hk9WykODS-fUHpcmgDEKP_z0rMGPANsYIrDRRvugazyxra73eOhUo8EEXLZL63RYba7QxUK1Hq5PuYdmz0_TwSgZvw5fBuU4qVlBQzKXuWoKweaSc0rIHCTPpMikEg0jMeTA4htSQA4kb4SqmzptJMsWXJE5zWjaQ3fHvVtnP3fgQ7W2O2fiyYqJgtO4lWZxihyname9d7Cotk5vlNtXlFQHu1W0Wx3sVie7ERF_kFoHFbQ1Uadu_wNvj6AGgN87RU55Lov0GxQYiXg |
| CODEN | IETPAK |
| CitedBy_id | crossref_primary_10_1109_TAP_2023_3324455 crossref_primary_10_1515_freq_2024_0054 crossref_primary_10_1109_TAP_2022_3214004 crossref_primary_10_3390_jmse12040557 crossref_primary_10_1109_LPT_2024_3427138 crossref_primary_10_1109_TAP_2025_3571223 crossref_primary_10_1109_TVT_2024_3417714 crossref_primary_10_1007_s11235_023_01063_9 crossref_primary_10_1109_TAP_2023_3249348 crossref_primary_10_1109_TAP_2025_3543076 crossref_primary_10_3390_electronics12061345 crossref_primary_10_1109_LAWP_2022_3229148 crossref_primary_10_1109_LAWP_2025_3547644 crossref_primary_10_1109_TAP_2023_3266051 crossref_primary_10_1016_j_aeue_2025_155937 crossref_primary_10_1016_j_measurement_2025_118370 crossref_primary_10_1109_ACCESS_2023_3317371 |
| Cites_doi | 10.1109/TAP.2010.2050425 10.1109/TAP.2012.2231936 10.1109/TCOMM.2020.2993626 10.1109/TAP.2021.3060136 10.1002/047178012X 10.1109/TVT.2019.2893928 10.1109/TAP.2019.2922779 10.1038/nature14539 10.1109/TAP.2009.2027046 10.1109/TAP.2020.3027898 10.1109/TCYB.2021.3049555 10.1109/ACCESS.2018.2883042 10.1109/TAP.2018.2885437 10.1109/TMI.2020.3035789 10.1038/scientificamerican0285-94 10.1109/TITS.2019.2962338 10.1109/TAP.2017.2730241 10.1109/TAP.2020.2998171 10.1109/TAP.2021.3096994 10.1109/APMC.2013.6695226 10.1109/TAP.1984.1143243 10.23919/ACES48530.2019.9060744 10.1109/TAP.2009.2026714 10.1109/JETCAS.2020.2972764 10.1109/LCOMM.2020.2999914 10.1109/JSAC.2021.3078492 10.1109/TMI.2020.3009002 10.23919/ICN.2020.0014 10.1109/ACCESS.2020.2968476 10.1109/TAP.2020.2970096 10.1002/9780470529188 10.1109/JIOT.2019.2921159 10.1109/TCOMM.2020.3019077 10.1109/TAP.2005.851783 10.1109/TAP.2003.811510 10.1109/MWC.2019.1900027 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TAP.2022.3150762 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2221 |
| EndPage | 5077 |
| ExternalDocumentID | 10_1109_TAP_2022_3150762 9715789 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 61871036 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c291t-b87ad962b855100be8548648a6d20a6d7e248486e7e07d6acdc3d824f5a0b1413 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831273600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-926X |
| IngestDate | Mon Jun 30 10:24:43 EDT 2025 Tue Nov 18 22:43:32 EST 2025 Sat Nov 29 05:23:17 EST 2025 Wed Aug 27 02:25:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-b87ad962b855100be8548648a6d20a6d7e248486e7e07d6acdc3d824f5a0b1413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3063-6563 0000-0002-4385-0764 0000-0001-9562-9634 0000-0003-4241-4984 0000-0002-5180-0484 0000-0002-5379-8752 0000-0002-7258-6413 |
| PQID | 2695151014 |
| PQPubID | 85476 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2695151014 ieee_primary_9715789 crossref_citationtrail_10_1109_TAP_2022_3150762 crossref_primary_10_1109_TAP_2022_3150762 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on antennas and propagation |
| PublicationTitleAbbrev | TAP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Silver (ref37); 1 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref14 doi: 10.1109/TAP.2010.2050425 – ident: ref15 doi: 10.1109/TAP.2012.2231936 – ident: ref28 doi: 10.1109/TCOMM.2020.2993626 – ident: ref4 doi: 10.1109/TAP.2021.3060136 – ident: ref5 doi: 10.1002/047178012X – ident: ref27 doi: 10.1109/TVT.2019.2893928 – ident: ref24 doi: 10.1109/TAP.2019.2922779 – ident: ref21 doi: 10.1038/nature14539 – ident: ref13 doi: 10.1109/TAP.2009.2027046 – ident: ref22 doi: 10.1109/TAP.2020.3027898 – ident: ref33 doi: 10.1109/TCYB.2021.3049555 – ident: ref10 doi: 10.1109/ACCESS.2018.2883042 – ident: ref25 doi: 10.1109/TAP.2018.2885437 – ident: ref18 doi: 10.1109/TMI.2020.3035789 – ident: ref2 doi: 10.1038/scientificamerican0285-94 – ident: ref16 doi: 10.1109/TITS.2019.2962338 – ident: ref36 doi: 10.1109/TAP.2017.2730241 – ident: ref23 doi: 10.1109/TAP.2020.2998171 – ident: ref31 doi: 10.1109/TAP.2021.3096994 – ident: ref7 doi: 10.1109/APMC.2013.6695226 – ident: ref35 doi: 10.1109/TAP.1984.1143243 – volume: 1 start-page: 1 volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML) ident: ref37 article-title: Deterministic policy gradient algorithms – ident: ref8 doi: 10.23919/ACES48530.2019.9060744 – ident: ref12 doi: 10.1109/TAP.2009.2026714 – ident: ref29 doi: 10.1109/JETCAS.2020.2972764 – ident: ref32 doi: 10.1109/LCOMM.2020.2999914 – ident: ref30 doi: 10.1109/JSAC.2021.3078492 – ident: ref17 doi: 10.1109/TMI.2020.3009002 – ident: ref20 doi: 10.23919/ICN.2020.0014 – ident: ref11 doi: 10.1109/ACCESS.2020.2968476 – ident: ref3 doi: 10.1109/TAP.2020.2970096 – ident: ref1 doi: 10.1002/9780470529188 – ident: ref34 doi: 10.1109/JIOT.2019.2921159 – ident: ref26 doi: 10.1109/TCOMM.2020.3019077 – ident: ref9 doi: 10.1109/TAP.2005.851783 – ident: ref6 doi: 10.1109/TAP.2003.811510 – ident: ref19 doi: 10.1109/MWC.2019.1900027 |
| SSID | ssj0014844 |
| Score | 2.493792 |
| Snippet | This article investigates the pattern synthesis of the conformal phased array antenna (PAA) by using the deep deterministic policy gradient (DDPG) algorithm,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5066 |
| SubjectTerms | Algorithms Antenna arrays Antenna radiation patterns Antennas Beam steering conformal phased array antenna (PAA) deep deterministic policy gradient (DDPG) deep neural network (DNN) deep reinforcement learning (DRL) Directive antennas Machine learning Optimization Phased arrays Planar arrays |
| Title | Ultra-Wide-Scanning Conformal Heterogeneous Phased Array Antenna Based on Deep Deterministic Policy Gradient Algorithm |
| URI | https://ieeexplore.ieee.org/document/9715789 https://www.proquest.com/docview/2695151014 |
| Volume | 70 |
| WOSCitedRecordID | wos000831273600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2221 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014844 issn: 0018-926X databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYA9dAegJZWDVDkA5dKdeM4jh_HQHmcUCRAzW3lx2yJlO6iZUHi3zP2bqJWrSr1Yq1WtmX5sz0znvF8hBzLAIlnasIC95FJHzXzzpZskr1CzsuxcplsQl9dmfnczjbIl_VbGADIwWfwNX1mX36sw2O6KhtaPcIFZjfJptaqe6u19hhII7uMyyPcwELNVy5Jboc30xkagkKgfYpDUOI3EZQ5Vf44iLN0Od_5v3Htku1ei6TTDva3ZAOqd-TNL7kF98jT7bJtHPu-iMCuQ8dMRNP7vqSkLullCoOpcfUAmv50dofCLGJ_jXum0xTVXjl6kv_VFf0GcI9FFzeTEzvTLp0wvWhyxFhLp8sfdbNo736-J7fnZzenl6wnWWBB2FHLvNEuWiW8Qd2Jcw8GbRgljVNRcCw0CJxao0AD11G5EMM4GiHLieN-hCLwA9mq6go-EupKo0yQkasyyJCYKaUABcKVVo611wMyXM17EfoM5IkIY1lkS4TbApEqElJFj9SAfF63uO-yb_yj7l5CZl2vB2VADlfQFv32fCiEQsUynUZy_--tDsjr1HcXl3tIttrmET6RV-GpXTw0R3nlvQCgMdcg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFD6sq6A-eNsVq6vmwRfB2DRNc3msl7XiWgp2sW9DLmfcQp1ZZmcX_PcmmWlRFMGXMAzJTMiXyzk5lw_ghfCYeKYm1DMXqHBBUWdNSSfZKmSdGEubySbUfK5XK7PYg1e7WBhEzM5n-Do9Zlt-qP1luiobGjWKE8xcg-uJOauP1trZDIQWXc7lUVzCXK62RklmhsvpIqqCnEcNNXZC8t8Oocyq8sdWnM-X47v_17N7cKeXI8m0A_4-7GH1AG7_kl3wAK5ON21j6dd1QPrFd9xEJEX4JTF1Q2bJEaaO8wej8k8WZ_E4C_F7jf1BpsmvvbLkTX5XV-Qd4nksOs-ZnNqZdAmFyYcm-4y1ZLr5Vjfr9uz7IZwev1--ndGeZoF6bkYtdVrZYCR3OkpPjDnUUYuRQlsZOIuFQh6HVktUyFSQ1gc_DpqLcmKZG0UcHsJ-VVf4CIgttdReBCZLL3ziphQcJXJbGjFWTg1guB33wvc5yBMVxqbIuggzRUSqSEgVPVIDeLlrcd7l3_hH3YOEzK5eD8oAjrbQFv0CvSi4jKJl2o_E47-3eg43Z8vPJ8XJx_mnJ3Ar_afz0j2C_ba5xKdww1-164vmWZ6FPwH9Jdpp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-Wide-Scanning+Conformal+Heterogeneous+Phased+Array+Antenna+Based+on+Deep+Deterministic+Policy+Gradient+Algorithm&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Zhang%2C+Binchao&rft.au=Jin%2C+Cheng&rft.au=Cao%2C+Kaiqi&rft.au=Lv%2C+Qihao&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=0018-926X&rft.volume=70&rft.issue=7&rft.spage=5066&rft.epage=5077&rft_id=info:doi/10.1109%2FTAP.2022.3150762&rft.externalDocID=9715789 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |