Deep Learning for Industrial KPI Prediction: When Ensemble Learning Meets Semi-Supervised Data

Soft-sensing techniques are of great significance in industrial processes for monitoring and prediction of key performance indicators. Due to the effectiveness of nonlinear feature extraction and strong expansibility, an autoencoder (AE) and its extensions have been widely developed for industrial a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 17; číslo 1; s. 260 - 269
Hlavní autori: Sun, Qingqiang, Ge, Zhiqiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Soft-sensing techniques are of great significance in industrial processes for monitoring and prediction of key performance indicators. Due to the effectiveness of nonlinear feature extraction and strong expansibility, an autoencoder (AE) and its extensions have been widely developed for industrial applications. Nevertheless, an AE commonly uses the last hidden layer for regression modeling with the output, which seems to be a kind of information waste as the shallow layers are also abstractions of input data. Besides, when there are excessive unlabeled samples, AE-based models are less likely to make full use of them or even degrade the performance. To deal with these issues, a method called ensemble semi-supervised gated stacked AE (ES 2 GSAE) is proposed in this article. Gate units are used to develop connections between different layers and the output layer, which also help quantify the contribution of different hidden layers. Moreover, the idea of ensemble learning is combined with semi-supervised learning, in which different unlabeled datasets are used for training different submodels to ensure their diversities. In this way, unlabeled samples can be utilized more efficiently and help enhance the model performance. The effectiveness and superiority are verified in a real industrial process by comparing the proposed method with other typical AE-based models.
AbstractList Soft-sensing techniques are of great significance in industrial processes for monitoring and prediction of key performance indicators. Due to the effectiveness of nonlinear feature extraction and strong expansibility, an autoencoder (AE) and its extensions have been widely developed for industrial applications. Nevertheless, an AE commonly uses the last hidden layer for regression modeling with the output, which seems to be a kind of information waste as the shallow layers are also abstractions of input data. Besides, when there are excessive unlabeled samples, AE-based models are less likely to make full use of them or even degrade the performance. To deal with these issues, a method called ensemble semi-supervised gated stacked AE (ES 2 GSAE) is proposed in this article. Gate units are used to develop connections between different layers and the output layer, which also help quantify the contribution of different hidden layers. Moreover, the idea of ensemble learning is combined with semi-supervised learning, in which different unlabeled datasets are used for training different submodels to ensure their diversities. In this way, unlabeled samples can be utilized more efficiently and help enhance the model performance. The effectiveness and superiority are verified in a real industrial process by comparing the proposed method with other typical AE-based models.
Soft-sensing techniques are of great significance in industrial processes for monitoring and prediction of key performance indicators. Due to the effectiveness of nonlinear feature extraction and strong expansibility, an autoencoder (AE) and its extensions have been widely developed for industrial applications. Nevertheless, an AE commonly uses the last hidden layer for regression modeling with the output, which seems to be a kind of information waste as the shallow layers are also abstractions of input data. Besides, when there are excessive unlabeled samples, AE-based models are less likely to make full use of them or even degrade the performance. To deal with these issues, a method called ensemble semi-supervised gated stacked AE (ES2GSAE) is proposed in this article. Gate units are used to develop connections between different layers and the output layer, which also help quantify the contribution of different hidden layers. Moreover, the idea of ensemble learning is combined with semi-supervised learning, in which different unlabeled datasets are used for training different submodels to ensure their diversities. In this way, unlabeled samples can be utilized more efficiently and help enhance the model performance. The effectiveness and superiority are verified in a real industrial process by comparing the proposed method with other typical AE-based models.
Author Sun, Qingqiang
Ge, Zhiqiang
Author_xml – sequence: 1
  givenname: Qingqiang
  orcidid: 0000-0002-7042-5640
  surname: Sun
  fullname: Sun, Qingqiang
  email: sunqingqiang@zju.edu.cn
  organization: Department of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Zhiqiang
  orcidid: 0000-0002-2071-4380
  surname: Ge
  fullname: Ge, Zhiqiang
  email: gezhiqiang@zju.edu.cn
  organization: Department of Control Science and Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kEFLxDAQRoMo6Kp3wUvAc9dJ2tjGm7irFlcUdsWbJU0mGumma9IK_nu7rCh48DQD870Z5o3Itm89EnLEYMwYyNNFWY45cBhzeSZzkFtkj8mMJQACtodeCJakHNJdMorxDSDNIZV75HmCuKIzVME7_0JtG2jpTR-74FRDbx9K-hDQON251p_Tp1f0dOojLusGf6k7xC7SOS5dMu9XGD5cREMnqlMHZMeqJuLhd90nj1fTxeVNMru_Li8vZonmknVJnSOvba5NgXmh6qIAZYFhJmyaccFtoXOdGuQolNHWgMmtQSZtnaFBqXS6T042e1ehfe8xdtVb2wc_nKx4Joo8E5CxIXW2SenQxhjQVtp1av1aF5RrKgbV2mU1uKzWLqtvlwMIf8BVcEsVPv9DjjeIQ8SfeDHMBBPpF0lpgjs
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_JSEN_2023_3274156
crossref_primary_10_1016_j_aei_2025_103172
crossref_primary_10_1002_cjce_25041
crossref_primary_10_1109_TIM_2024_3372220
crossref_primary_10_1016_j_ifacsc_2021_100150
crossref_primary_10_1109_TII_2022_3202909
crossref_primary_10_1109_TVT_2021_3051966
crossref_primary_10_1109_TII_2022_3190394
crossref_primary_10_1109_TII_2021_3120509
crossref_primary_10_1109_TII_2024_3424510
crossref_primary_10_1109_TIM_2023_3284017
crossref_primary_10_1109_TFUZZ_2023_3276009
crossref_primary_10_1109_TIM_2025_3580794
crossref_primary_10_1016_j_chemosphere_2022_136119
crossref_primary_10_1109_TIA_2023_3274099
crossref_primary_10_1109_TIM_2024_3427786
crossref_primary_10_3390_math12020296
crossref_primary_10_3390_s21030823
crossref_primary_10_1016_j_jprocont_2022_09_009
crossref_primary_10_1016_j_ces_2025_121295
crossref_primary_10_1109_TII_2021_3123823
crossref_primary_10_1007_s10462_022_10354_7
crossref_primary_10_1088_1361_6501_ad5612
crossref_primary_10_1016_j_eswa_2024_124459
crossref_primary_10_1016_j_cjche_2025_04_010
crossref_primary_10_1109_JSTARS_2022_3225665
crossref_primary_10_1016_j_conengprac_2021_104903
crossref_primary_10_1016_j_engappai_2022_105547
crossref_primary_10_3390_s22155861
crossref_primary_10_1109_TASE_2023_3253285
crossref_primary_10_1016_j_mineng_2023_108179
crossref_primary_10_1109_TII_2022_3217832
crossref_primary_10_1109_TSMC_2023_3322195
crossref_primary_10_1007_s11356_022_20438_0
crossref_primary_10_1109_TSMC_2025_3540028
crossref_primary_10_1016_j_jprocont_2022_01_007
crossref_primary_10_1109_TII_2021_3093386
crossref_primary_10_1016_j_cherd_2022_01_026
crossref_primary_10_1109_TII_2022_3217829
crossref_primary_10_1109_TII_2021_3053128
crossref_primary_10_1109_TII_2023_3265525
crossref_primary_10_1109_LRA_2024_3524901
crossref_primary_10_3390_ijerph192416798
crossref_primary_10_1080_08839514_2024_2387504
crossref_primary_10_1016_j_cie_2023_109286
crossref_primary_10_1016_j_dche_2022_100034
crossref_primary_10_1109_TII_2024_3371990
crossref_primary_10_1016_j_jprocont_2021_02_004
crossref_primary_10_1109_TCSII_2022_3233646
crossref_primary_10_1007_s40815_023_01544_8
crossref_primary_10_1016_j_measurement_2023_113036
crossref_primary_10_1016_j_asoc_2024_112283
crossref_primary_10_1109_JSEN_2020_3033153
crossref_primary_10_1109_TII_2022_3191980
crossref_primary_10_1016_j_procir_2023_08_017
crossref_primary_10_1109_TCYB_2025_3554475
crossref_primary_10_1109_TII_2020_3039272
crossref_primary_10_1109_TIM_2021_3075754
crossref_primary_10_1109_TASE_2025_3576122
crossref_primary_10_1109_TIM_2025_3571076
crossref_primary_10_1016_j_engappai_2024_108772
crossref_primary_10_1109_TNNLS_2024_3415072
crossref_primary_10_1109_TII_2024_3379643
crossref_primary_10_1109_JIOT_2025_3538627
crossref_primary_10_1016_j_conengprac_2025_106383
crossref_primary_10_1016_j_ins_2021_03_026
crossref_primary_10_1109_TIE_2022_3151960
crossref_primary_10_1109_JSEN_2023_3266104
crossref_primary_10_1109_TII_2022_3200357
crossref_primary_10_1109_TII_2021_3073645
crossref_primary_10_1088_1361_6501_ac7b6c
crossref_primary_10_1109_TIM_2020_3011251
crossref_primary_10_1016_j_jclepro_2024_142435
crossref_primary_10_1109_ACCESS_2021_3116201
crossref_primary_10_1109_ACCESS_2024_3398597
crossref_primary_10_1002_oca_2770
crossref_primary_10_1016_j_arcontrol_2022_09_005
crossref_primary_10_1016_j_aei_2023_101916
crossref_primary_10_1109_TPAMI_2024_3486319
crossref_primary_10_1109_TAI_2022_3145758
crossref_primary_10_1109_TII_2020_3027746
crossref_primary_10_1016_j_compbiomed_2023_106744
crossref_primary_10_1109_TIM_2021_3075515
crossref_primary_10_3390_s21248471
crossref_primary_10_1016_j_engappai_2024_108881
crossref_primary_10_1109_JSEN_2022_3199264
crossref_primary_10_1109_TCC_2022_3227171
crossref_primary_10_1016_j_eswa_2023_120097
crossref_primary_10_3390_en15072546
Cites_doi 10.1016/j.conengprac.2019.104198
10.1016/j.conengprac.2019.04.007
10.1016/j.chemolab.2016.01.009
10.1109/TII.2018.2880968
10.1109/TCST.2017.2767022
10.1016/j.conengprac.2019.07.016
10.1109/TIE.2017.2733448
10.1038/nature14539
10.1016/j.chemolab.2018.01.008
10.1016/j.chemolab.2019.103814
10.1016/j.chemolab.2019.03.008
10.1109/TCYB.2017.2771229
10.1016/j.eng.2019.01.019
10.1016/j.jprocont.2017.08.010
10.1109/TII.2019.2902129
10.1016/j.neucom.2019.07.065
10.1109/TII.2019.2938890
10.1016/j.jprocont.2014.01.012
10.1162/neco.2006.18.7.1527
10.1016/j.ifacol.2018.09.356
10.1021/acs.iecr.8b02913
10.1016/j.conengprac.2017.06.002
10.1109/TII.2018.2809730
10.1109/ACCESS.2019.2894764
10.1016/j.ifacol.2018.08.226
10.1109/TIE.2018.2874589
10.1109/ACCESS.2017.2756872
10.1016/j.neunet.2014.09.003
10.1016/j.chemolab.2013.11.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.2969709
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 269
ExternalDocumentID 10_1109_TII_2020_2969709
8970515
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LR18F030001
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 61722310; 61673337
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-b7e2bf7cd8e78ab880af01e45f34252f8c7c3de2e5adcfd0d7fde19fb4ede9ac3
IEDL.DBID RIE
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587719200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:18:31 EDT 2025
Sat Nov 29 04:16:51 EST 2025
Tue Nov 18 22:30:38 EST 2025
Wed Aug 27 02:29:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b7e2bf7cd8e78ab880af01e45f34252f8c7c3de2e5adcfd0d7fde19fb4ede9ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2071-4380
0000-0002-7042-5640
PQID 2458745041
PQPubID 85507
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TII_2020_2969709
crossref_primary_10_1109_TII_2020_2969709
proquest_journals_2458745041
ieee_primary_8970515
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
chung (ref29) 2014
ref24
ref23
ref26
ref25
ref20
lecun (ref14) 2015; 521
ref22
ref21
ref27
ref8
ref7
sak (ref28) 2014
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1016/j.conengprac.2019.104198
– ident: ref20
  doi: 10.1016/j.conengprac.2019.04.007
– ident: ref7
  doi: 10.1016/j.chemolab.2016.01.009
– ident: ref26
  doi: 10.1109/TII.2018.2880968
– ident: ref11
  doi: 10.1109/TCST.2017.2767022
– ident: ref27
  doi: 10.1016/j.conengprac.2019.07.016
– ident: ref24
  doi: 10.1109/TIE.2017.2733448
– volume: 521
  start-page: 436
  year: 2015
  ident: ref14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref30
  doi: 10.1016/j.chemolab.2018.01.008
– ident: ref23
  doi: 10.1016/j.chemolab.2019.103814
– year: 2014
  ident: ref29
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: arXiv 1412 3555
– ident: ref31
  doi: 10.1016/j.chemolab.2019.03.008
– ident: ref10
  doi: 10.1109/TCYB.2017.2771229
– ident: ref4
  doi: 10.1016/j.eng.2019.01.019
– ident: ref3
  doi: 10.1016/j.jprocont.2017.08.010
– ident: ref18
  doi: 10.1109/TII.2019.2902129
– ident: ref22
  doi: 10.1016/j.neucom.2019.07.065
– year: 2014
  ident: ref28
  article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling
  publication-title: InterSpeech
– ident: ref25
  doi: 10.1109/TII.2019.2938890
– ident: ref17
  doi: 10.1016/j.jprocont.2014.01.012
– ident: ref13
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref8
  doi: 10.1016/j.ifacol.2018.09.356
– ident: ref5
  doi: 10.1021/acs.iecr.8b02913
– ident: ref12
  doi: 10.1016/j.conengprac.2017.06.002
– ident: ref21
  doi: 10.1109/TII.2018.2809730
– ident: ref19
  doi: 10.1109/ACCESS.2019.2894764
– ident: ref2
  doi: 10.1016/j.ifacol.2018.08.226
– ident: ref6
  doi: 10.1109/TIE.2018.2874589
– ident: ref1
  doi: 10.1109/ACCESS.2017.2756872
– ident: ref15
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref9
  doi: 10.1016/j.chemolab.2013.11.006
SSID ssj0037039
Score 2.5960057
Snippet Soft-sensing techniques are of great significance in industrial processes for monitoring and prediction of key performance indicators. Due to the effectiveness...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 260
SubjectTerms Data models
Deep learning
Deep learning (DL)
Ensemble learning
Feature extraction
gated neurons
Industrial applications
Logic gates
Neurons
Performance degradation
semi-supervised learning
Sensors
soft sensor
stacked autoencoder (SAE)
Training
Title Deep Learning for Industrial KPI Prediction: When Ensemble Learning Meets Semi-Supervised Data
URI https://ieeexplore.ieee.org/document/8970515
https://www.proquest.com/docview/2458745041
Volume 17
WOSCitedRecordID wos000587719200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4lAOPEoRy0s-9FKpZhM_1jE3xEOs2qKVoBKnRrE9RkgQVpssvx_bm12KWlXqLQePFfnzjMce-_sAPgs78AKrAZW-EFTI3FKDBaeZkYIz5YzDxDP7XV1fF3d3erQEXxdvYRAxXT7D4_iZavnu2U7jUVm_0CpKkizDslJq9lZrHnV5mLk6caPKnHKW8XlJMtP92-EwbARZdsz0IPSg3y1BSVPlj0CcVpfLjf_7r01Y77JIcjqDfQuWsP4Ia79xC27Dr3PEMenoU-9JyE3Jm0wH-TYaktEkFmkiMCckxOSaXNQNPplHfLP6gdg25AafHujNdBzDSoOOnFdt9Ql-Xl7cnl3RTkyBWqbzlhqFzHhlXYGqqExw28pnOQrpeXBb5gurLHfIUFbOepc55R3m2huBDnVl-Q6s1M817gJhnntrfe6F14LzylirRUi7PPKB8lL2oD8f39J2TONR8OKxTDuOTJcBkTIiUnaI9ODLwmI8Y9n4R9vtiMCiXTf4PTiYQ1h2btiUTMhI55-JfO_vVvvwgcVLKulM5QBW2skUD2HVvrQPzeQozbBXdHXPvg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB21pVLhALQFESjgAxck3Oz6I15zQ7RVo6ZRpAapp67W9hhVardRdsPvx3Y2aSsQErc9eKyVn2c89tjvAXwSduAFVgMqfSGokLmlBgtOMyMFZ8oZh4lndqTG4-LyUk824Mv6LQwipstneBg_Uy3f3dlFPCrrF1pFSZJNeCKFYPnytdYq7vIwd3ViR5U55Szjq6JkpvvT4TBsBVl2yPQg9KEfLUJJVeWPUJzWl5MX__dnL-F5l0eSb0vgd2ED6z149oBdcB-ujhBnpCNQ_UlCdkruhTrI2WRIJvNYponQfCUhKtfkuG7w1tzgvdU5YtuQC7y9pheLWQwsDTpyVLXVK_hxcjz9fko7OQVqmc5bahQy45V1BaqiMsFxK5_lKKTnwXGZL6yy3CFDWTnrXeaUd5hrbwQ61JXlr2GrvqvxDRDmubfW5154LTivjLVahMTLIx8oL2UP-qvxLW3HNR4lL27KtOfIdBkQKSMiZYdIDz6vLWZLno1_tN2PCKzbdYPfg4MVhGXniE3JhIyE_pnI3_7d6iPsnE7PR-VoOD57B09ZvLKSTlgOYKudL_A9bNtf7XUz_5Bm229qlNMF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Industrial+KPI+Prediction%3A+When+Ensemble+Learning+Meets+Semi-Supervised+Data&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Sun%2C+Qingqiang&rft.au=Ge%2C+Zhiqiang&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=1&rft.spage=260&rft_id=info:doi/10.1109%2FTII.2020.2969709&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon