The Kernel Conjugate Gradient Algorithms

Kernel methods have been successfully applied to nonlinear problems in machine learning and signal processing. Various kernel-based algorithms have been proposed over the last two decades. In this paper, we investigate the kernel conjugate gradient (KCG) algorithms in both batch and online modes. By...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 66; no. 16; pp. 4377 - 4387
Main Authors: Zhang, Ming, Wang, Xiaojian, Chen, Xiaoming, Zhang, Anxue
Format: Journal Article
Language:English
Published: New York IEEE 15.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Kernel methods have been successfully applied to nonlinear problems in machine learning and signal processing. Various kernel-based algorithms have been proposed over the last two decades. In this paper, we investigate the kernel conjugate gradient (KCG) algorithms in both batch and online modes. By expressing the solution vector of CG algorithm as a linear combination of the input vectors and using the kernel trick, we developed the KCG algorithm for batch mode. Because the CG algorithm is iterative in nature, it can greatly reduce the computations by the technique of reduced-rank processing. Moreover, the reduced-rank processing can provide the robustness against the problem of overlearning. The online KCG algorithm is also derived, which converges as fast as the kernel recursive least squares (KRLS) algorithm, but the computational cost is only a quarter of that of the KRLS algorithm. Another attractive feature of the online KCG algorithm compared with other kernel adaptive algorithms is that it does not require the user-defined parameters. To control the growth of data size in online applications, a simple sparsification criterion based on the angles among elements in reproducing kernel Hilbert space is proposed. The angle criterion is equivalent to the coherence criterion but does not require the kernel to be unit norm. Finally, numerical experiments are provided to illustrate the effectiveness of the proposed algorithms.
AbstractList Kernel methods have been successfully applied to nonlinear problems in machine learning and signal processing. Various kernel-based algorithms have been proposed over the last two decades. In this paper, we investigate the kernel conjugate gradient (KCG) algorithms in both batch and online modes. By expressing the solution vector of CG algorithm as a linear combination of the input vectors and using the kernel trick, we developed the KCG algorithm for batch mode. Because the CG algorithm is iterative in nature, it can greatly reduce the computations by the technique of reduced-rank processing. Moreover, the reduced-rank processing can provide the robustness against the problem of overlearning. The online KCG algorithm is also derived, which converges as fast as the kernel recursive least squares (KRLS) algorithm, but the computational cost is only a quarter of that of the KRLS algorithm. Another attractive feature of the online KCG algorithm compared with other kernel adaptive algorithms is that it does not require the user-defined parameters. To control the growth of data size in online applications, a simple sparsification criterion based on the angles among elements in reproducing kernel Hilbert space is proposed. The angle criterion is equivalent to the coherence criterion but does not require the kernel to be unit norm. Finally, numerical experiments are provided to illustrate the effectiveness of the proposed algorithms.
Author Zhang, Anxue
Wang, Xiaojian
Zhang, Ming
Chen, Xiaoming
Author_xml – sequence: 1
  givenname: Ming
  orcidid: 0000-0002-5796-4754
  surname: Zhang
  fullname: Zhang, Ming
  email: itjerry@163.com
  organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Xiaojian
  surname: Wang
  fullname: Wang, Xiaojian
  email: wangxj235@163.com
  organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Xiaoming
  orcidid: 0000-0003-3151-1690
  surname: Chen
  fullname: Chen, Xiaoming
  email: xiaoming.chen@mail.xjtu.edu.cn
  organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Anxue
  orcidid: 0000-0002-4690-2718
  surname: Zhang
  fullname: Zhang, Anxue
  email: anxuezhang@mail.xjtu.edu.cn
  organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
BookMark eNp9kEFLw0AQRhepYFu9C14CXrykziS72d1jKVrFgoIVvC3bzaRNSZO62Rz896a0ePDgaT6G783AG7FB3dTE2DXCBBH0_fL9bZIAqkmiRNovztgQNccYuMwGfQaRxkLJzws2atstAHKusyG7W24oeiFfUxXNmnrbrW2gaO5tXlIdomm1bnwZNrv2kp0Xtmrp6jTH7OPxYTl7ihev8-fZdBG7RGOIV1w45XKeQFpgobQUK-04WEICYYtCE1lIpUoyTGQO2pHIFUeVpytbOEnpmN0e7-5989VRG8y26XzdvzQJogShtRB9Kzu2nG_a1lNhXBlsKJs6eFtWBsEcrJjeijlYMScrPQh_wL0vd9Z__4fcHJGSiH7rioOSUqY_cjxt4g
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_patcog_2023_110198
crossref_primary_10_1109_LSP_2019_2907480
crossref_primary_10_3390_math12243935
crossref_primary_10_3390_e21080785
crossref_primary_10_1109_ACCESS_2020_2968753
crossref_primary_10_3389_fpls_2022_849606
crossref_primary_10_1016_j_sigpro_2020_107836
crossref_primary_10_1016_j_sigpro_2024_109837
crossref_primary_10_1109_TCSII_2023_3303365
crossref_primary_10_1016_j_sigpro_2022_108787
crossref_primary_10_1109_TCSII_2023_3304698
crossref_primary_10_1007_s11277_024_11084_5
crossref_primary_10_1049_ell2_12809
crossref_primary_10_1109_LSP_2021_3081381
crossref_primary_10_1109_TCYB_2019_2959834
crossref_primary_10_1109_TSP_2021_3065173
crossref_primary_10_1016_j_neunet_2023_04_040
crossref_primary_10_1016_j_neucom_2025_130234
crossref_primary_10_1007_s00034_021_01804_8
crossref_primary_10_1109_TCSII_2019_2957781
crossref_primary_10_1109_TAES_2025_3540050
crossref_primary_10_1016_j_dsp_2025_104997
crossref_primary_10_3390_electronics11182819
crossref_primary_10_1007_s11277_021_08155_2
crossref_primary_10_1109_TIM_2022_3173628
crossref_primary_10_1016_j_jfranklin_2022_04_002
crossref_primary_10_1109_LSP_2022_3167897
crossref_primary_10_3390_sym11101323
crossref_primary_10_1007_s00034_024_02654_w
crossref_primary_10_1109_TFUZZ_2023_3348847
crossref_primary_10_1109_LSP_2023_3284842
crossref_primary_10_1007_s00034_022_02258_2
Cites_doi 10.1049/iet-spr.2011.0324
10.1109/DSP-SPE.2013.6642587
10.1109/ICASSP.2006.1661394
10.1109/TSP.2007.907881
10.1109/18.737524
10.1155/2008/784292
10.1007/978-3-319-18842-3
10.1090/S0002-9947-1950-0051437-7
10.1016/0022-247X(71)90184-3
10.1109/TSP.2004.830991
10.6028/jres.049.044
10.1109/IJCNN.2005.1556088
10.1137/1.9780898719697
10.1109/ICASSP.2017.7952666
10.1109/TSP.2009.2022007
10.1162/089976698300017467
10.1109/TNNLS.2012.2200500
10.1109/TSP.2009.2022857
10.1109/TSP.2008.2009895
10.1109/TNNLS.2013.2285783
10.1109/TSP.2015.2437835
10.1002/cem.728
10.1109/TSP.2010.2096420
10.1109/TSP.2004.830985
10.1145/355984.355989
10.1007/978-1-4757-3264-1
10.56021/9781421407944
10.1109/TNNLS.2011.2178446
10.1109/TSP.2015.2457396
10.1109/TNNLS.2013.2258936
10.1109/TSP.2015.2493990
10.1109/TSP.2016.2605075
10.1109/TSP.2017.2726991
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2018.2853109
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 4387
ExternalDocumentID 10_1109_TSP_2018_2853109
8408777
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61471292
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-b45c8cd4203f1f8975b9c40ae1e05aff9eea037826127d09ce5d8418d3bafc7e3
IEDL.DBID RIE
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439360200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:19:14 EDT 2025
Tue Nov 18 21:09:03 EST 2025
Sat Nov 29 04:10:46 EST 2025
Wed Aug 27 02:39:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b45c8cd4203f1f8975b9c40ae1e05aff9eea037826127d09ce5d8418d3bafc7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3151-1690
0000-0002-5796-4754
0000-0002-4690-2718
PQID 2117059955
PQPubID 85478
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TSP_2018_2853109
proquest_journals_2117059955
crossref_primary_10_1109_TSP_2018_2853109
ieee_primary_8408777
PublicationCentury 2000
PublicationDate 2018-08-15
PublicationDateYYYYMMDD 2018-08-15
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
blanchard (ref39) 2010; 23
ref15
luenberger (ref20) 2016
ref36
ref14
bach (ref6) 2002; 3
ref31
ref33
ref11
ref10
haykin (ref19) 2014
ref1
ref17
ratliff (ref24) 2007
ref38
mcdonald (ref32) 2013
ref16
golub (ref35) 2013
fletcher (ref23) 1987
schölkopf (ref2) 2002
kreyszig (ref30) 1978
ref25
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
hiemstra (ref37) 2003
ref9
ref4
widrow (ref18) 1985
ref3
rosipal (ref26) 2001; 2
ref5
ref40
References_xml – ident: ref21
  doi: 10.1049/iet-spr.2011.0324
– ident: ref43
  doi: 10.1109/DSP-SPE.2013.6642587
– ident: ref11
  doi: 10.1109/ICASSP.2006.1661394
– ident: ref12
  doi: 10.1109/TSP.2007.907881
– ident: ref44
  doi: 10.1109/18.737524
– year: 1978
  ident: ref30
  publication-title: Introductory Functional Analysis With Applications
– ident: ref40
  doi: 10.1155/2008/784292
– year: 2016
  ident: ref20
  publication-title: Linear and Nonlinear Programming
  doi: 10.1007/978-3-319-18842-3
– volume: 23
  start-page: 226
  year: 2010
  ident: ref39
  article-title: Optimal learning rates for kernel conjugate gradient regression
  publication-title: Proc Adv Neural Inf Process Syst
– year: 1985
  ident: ref18
  publication-title: Adaptive Signal Processing
– ident: ref1
  doi: 10.1090/S0002-9947-1950-0051437-7
– year: 2013
  ident: ref32
  publication-title: A Cause in Real Analysis
– ident: ref31
  doi: 10.1016/0022-247X(71)90184-3
– ident: ref8
  doi: 10.1109/TSP.2004.830991
– ident: ref33
  doi: 10.6028/jres.049.044
– ident: ref10
  doi: 10.1109/IJCNN.2005.1556088
– ident: ref22
  doi: 10.1137/1.9780898719697
– year: 2014
  ident: ref19
  publication-title: Adaptive Filter Theory
– ident: ref27
  doi: 10.1109/ICASSP.2017.7952666
– ident: ref13
  doi: 10.1109/TSP.2009.2022007
– ident: ref4
  doi: 10.1162/089976698300017467
– ident: ref42
  doi: 10.1109/TNNLS.2012.2200500
– ident: ref7
  doi: 10.1109/TSP.2009.2022857
– ident: ref14
  doi: 10.1109/TSP.2008.2009895
– ident: ref5
  doi: 10.1109/TNNLS.2013.2285783
– ident: ref17
  doi: 10.1109/TSP.2015.2437835
– volume: 3
  start-page: 1
  year: 2002
  ident: ref6
  article-title: Kernel independent component analysis
  publication-title: J Mach Learn Res
– ident: ref25
  doi: 10.1002/cem.728
– volume: 2
  start-page: 97
  year: 2001
  ident: ref26
  article-title: Kernel partial least squares regression in reproducing kernel Hilbert spaces
  publication-title: J Mach Learn Res
– ident: ref15
  doi: 10.1109/TSP.2010.2096420
– ident: ref9
  doi: 10.1109/TSP.2004.830985
– year: 2003
  ident: ref37
  article-title: Robust implementations of the multistage Wiener filter
– ident: ref34
  doi: 10.1145/355984.355989
– ident: ref3
  doi: 10.1007/978-1-4757-3264-1
– year: 2013
  ident: ref35
  publication-title: Matrix Computations
  doi: 10.56021/9781421407944
– year: 2002
  ident: ref2
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
– ident: ref16
  doi: 10.1109/TNNLS.2011.2178446
– ident: ref28
  doi: 10.1109/TSP.2015.2457396
– ident: ref41
  doi: 10.1109/TNNLS.2013.2258936
– year: 1987
  ident: ref23
  publication-title: Practical Methods of Optimization
– ident: ref38
  doi: 10.1109/TSP.2015.2493990
– start-page: 1017
  year: 2007
  ident: ref24
  article-title: Kernel conjugate gradient for fast kernel machines
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref36
  doi: 10.1109/TSP.2016.2605075
– ident: ref29
  doi: 10.1109/TSP.2017.2726991
SSID ssj0014496
Score 2.4486089
Snippet Kernel methods have been successfully applied to nonlinear problems in machine learning and signal processing. Various kernel-based algorithms have been...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4377
SubjectTerms Adaptive algorithms
Algorithms
Computational efficiency
conjugate gradient algorithm
Conjugates
Convergence
Criteria
Hilbert space
Iterative methods
Kernel
Machine learning
Machine learning algorithms
nonlinear processing
online sparsification
Optimization
regularization
Reproducing kernel Hilbert space
Robustness (mathematics)
Signal processing
Signal processing algorithms
Title The Kernel Conjugate Gradient Algorithms
URI https://ieeexplore.ieee.org/document/8408777
https://www.proquest.com/docview/2117059955
Volume 66
WOSCitedRecordID wos000439360200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7M4YM-eJvidEoffFCwrm2SpXkcwwsoY6DC3kqbnOhkttJ1_n6TrBuCIvjWQk4pXy7nmvMBnBGmMsm1cUsYKp-aNz-NUuoTqu3W4kbMsZY88OEwHo_FqAGXq7swiOiKz_DKPrpcvirk3IbKusYZse3r1mCN897irtYqY0Cp4-Iy5gLxWczHy5RkILpPjyNbwxVfRUY3udLDbyrIcar8OIiddrnZ_t9_7cBWbUV6_cW070ID8z3Y_NZbsAXnZgF491jmOPUGRf42t_Ey77Z0JV6V15--FOWken2f7cPzzfXT4M6vaRF8GYmw8jPKpKUcigKiQx0LzjIhaZBiiAFLtRaIaUCM5jfGC1eBkMhUTMNYkSzVkiM5gGZe5HgIHmNIFBFaGCePplJkkVBa9USmQ5kyotrQXSKVyLpnuKWumCbOdwhEYrBNLLZJjW0bLlYSH4t-GX-MbVksV-NqGNvQWU5GUm-oWRJZhhzbHI0d_S51DBv22zbcG7IONKtyjiewLj-ryaw8dWvlCz6Gu6I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivffBBwW5tk9jmUcQbm0Nwwt5Km5zoZLbSdf5-k6wrA0XwrYUcWr5czjXnAzglTKYiVNotYShdqt_cJEioS6gyWyvUYpa1pBN2u1G_z5_m4KK-C4OItvgMm-bR5vJlLsYmVNbSzohpXzcPi4zSwJvc1qpzBpRaNi5tMBCXRWF_mpT0eKv3_GSquKJmoLWTLT6cUUKWVeXHUWz1y-36__5sA9YqO9K5mkz8JsxhtgWrM90Ft-FMLwGnjUWGQ-c6z97HJmLm3BW2yKt0roaveTEo3z5GO_Bye9O7vncrYgRXBNwv3ZQyYUiHAo8oX0U8ZCkX1EvQR48lSnHExCNa92vzJZQeF8hkRP1IkjRRIkSyCwtZnuEeOIwhkYQrrt08mgieBlwqeclT5YuEEdmA1hSpWFRdww15xTC23oPHY41tbLCNK2wbcF5LfE46ZvwxdttgWY-rYGzA4XQy4mpLjeLAcOSY9mhs_3epE1i-7z124s5Dt30AK-Y7Jvjrs0NYKIsxHsGS-CoHo-LYrptvLyC-6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Kernel+Conjugate+Gradient+Algorithms&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Zhang%2C+Ming&rft.au=Wang%2C+Xiaojian&rft.au=Chen%2C+Xiaoming&rft.au=Zhang%2C+Anxue&rft.date=2018-08-15&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=66&rft.issue=16&rft.spage=4377&rft.epage=4387&rft_id=info:doi/10.1109%2FTSP.2018.2853109&rft.externalDocID=8408777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon