A Generalization of Array Codes With Local Properties and Efficient Encoding/Decoding

An <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array code is composed of <inline-formula> <tex-math notation="LaTeX">m\times n </tex-math></inline-formula> arrays such that any...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 69; číslo 1; s. 107 - 125
Hlavní autori: Hou, Hanxu, Han, Yunghsiang S., Lee, Patrick P. C., Wu, You, Han, Guojun, Blaum, Mario
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array code is composed of <inline-formula> <tex-math notation="LaTeX">m\times n </tex-math></inline-formula> arrays such that any <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> out of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> columns suffice to retrieve all the information symbols, where <inline-formula> <tex-math notation="LaTeX">n > k </tex-math></inline-formula>. Note that maximum distance separable (MDS) array code is a special <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array code of size <inline-formula> <tex-math notation="LaTeX">m\times n </tex-math></inline-formula> with the number of information symbols being <inline-formula> <tex-math notation="LaTeX">km </tex-math></inline-formula>. Expanded-Blaum-Roth (EBR) codes and Expanded-Independent-Parity (EIP) codes are two classes of <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array codes that can repair any one symbol in a column by locally accessing some other symbols within the column, where the number of symbols <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> in a column is a prime number. By generalizing the constructions of EBR and EIP codes, we propose new <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array codes, such that any one symbol can be locally recovered and the number of symbols in a column can be not only a prime number but also a power of an odd prime number. Also, we present an efficient encoding/decoding method for the proposed generalized EBR (GEBR) and generalized EIP (GEIP) codes based on the LU factorization of a Vandermonde matrix. We show that the proposed decoding method has less computational complexity than existing methods. Furthermore, we show that the proposed GEBR codes have both a larger minimum symbol distance and a larger recovery ability of erased lines for some parameters when compared to EBR codes. We also present a necessary and sufficient condition of enabling EBR codes to recover any <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> erased lines of a slope for any parameter <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula>, which was an open problem. Moreover, we show that EBR codes can recover any <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> consecutive erased lines of any slope for any parameter <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula>.
AbstractList An [Formula Omitted] recoverable property array code is composed of [Formula Omitted] arrays such that any [Formula Omitted] out of [Formula Omitted] columns suffice to retrieve all the information symbols, where [Formula Omitted]. Note that maximum distance separable (MDS) array code is a special [Formula Omitted] recoverable property array code of size [Formula Omitted] with the number of information symbols being [Formula Omitted]. Expanded-Blaum-Roth (EBR) codes and Expanded-Independent-Parity (EIP) codes are two classes of [Formula Omitted] recoverable property array codes that can repair any one symbol in a column by locally accessing some other symbols within the column, where the number of symbols [Formula Omitted] in a column is a prime number. By generalizing the constructions of EBR and EIP codes, we propose new [Formula Omitted] recoverable property array codes, such that any one symbol can be locally recovered and the number of symbols in a column can be not only a prime number but also a power of an odd prime number. Also, we present an efficient encoding/decoding method for the proposed generalized EBR (GEBR) and generalized EIP (GEIP) codes based on the LU factorization of a Vandermonde matrix. We show that the proposed decoding method has less computational complexity than existing methods. Furthermore, we show that the proposed GEBR codes have both a larger minimum symbol distance and a larger recovery ability of erased lines for some parameters when compared to EBR codes. We also present a necessary and sufficient condition of enabling EBR codes to recover any [Formula Omitted] erased lines of a slope for any parameter [Formula Omitted], which was an open problem. Moreover, we show that EBR codes can recover any [Formula Omitted] consecutive erased lines of any slope for any parameter [Formula Omitted].
An <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array code is composed of <inline-formula> <tex-math notation="LaTeX">m\times n </tex-math></inline-formula> arrays such that any <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> out of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> columns suffice to retrieve all the information symbols, where <inline-formula> <tex-math notation="LaTeX">n > k </tex-math></inline-formula>. Note that maximum distance separable (MDS) array code is a special <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array code of size <inline-formula> <tex-math notation="LaTeX">m\times n </tex-math></inline-formula> with the number of information symbols being <inline-formula> <tex-math notation="LaTeX">km </tex-math></inline-formula>. Expanded-Blaum-Roth (EBR) codes and Expanded-Independent-Parity (EIP) codes are two classes of <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array codes that can repair any one symbol in a column by locally accessing some other symbols within the column, where the number of symbols <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> in a column is a prime number. By generalizing the constructions of EBR and EIP codes, we propose new <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array codes, such that any one symbol can be locally recovered and the number of symbols in a column can be not only a prime number but also a power of an odd prime number. Also, we present an efficient encoding/decoding method for the proposed generalized EBR (GEBR) and generalized EIP (GEIP) codes based on the LU factorization of a Vandermonde matrix. We show that the proposed decoding method has less computational complexity than existing methods. Furthermore, we show that the proposed GEBR codes have both a larger minimum symbol distance and a larger recovery ability of erased lines for some parameters when compared to EBR codes. We also present a necessary and sufficient condition of enabling EBR codes to recover any <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> erased lines of a slope for any parameter <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula>, which was an open problem. Moreover, we show that EBR codes can recover any <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> consecutive erased lines of any slope for any parameter <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula>.
Author Lee, Patrick P. C.
Blaum, Mario
Wu, You
Han, Guojun
Han, Yunghsiang S.
Hou, Hanxu
Author_xml – sequence: 1
  givenname: Hanxu
  orcidid: 0000-0001-7328-9341
  surname: Hou
  fullname: Hou, Hanxu
  email: houhanxu@163.com
  organization: School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, China
– sequence: 2
  givenname: Yunghsiang S.
  orcidid: 0000-0002-3592-1681
  surname: Han
  fullname: Han, Yunghsiang S.
  email: yunghsiang@gmail.com
  organization: Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
– sequence: 3
  givenname: Patrick P. C.
  orcidid: 0000-0002-4501-4364
  surname: Lee
  fullname: Lee, Patrick P. C.
  email: pclee@cse.edu.cuhk.hk
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
– sequence: 4
  givenname: You
  surname: Wu
  fullname: Wu, You
  email: 278008313@qq.com
  organization: Beijing Didi Infinity Technology and Development Company Ltd., Beijing, China
– sequence: 5
  givenname: Guojun
  surname: Han
  fullname: Han, Guojun
  email: gjhan@gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
– sequence: 6
  givenname: Mario
  orcidid: 0000-0002-5711-9411
  surname: Blaum
  fullname: Blaum, Mario
  email: mblaum@hotmail.com
  organization: IBM Research Division-Almaden, San Jose, CA, USA
BookMark eNp9kEtPAjEUhRuDiYDuTdw0cT3QdqavJUFEEhJdQFw2pdNqCbbYGRb46y0OceHCzX3lnntuvgHohRgsALcYjTBGcrxarEYEETIqc8QVugB9TCkvJKNVD_QRwqKQVSWuwKBptrmtKCZ9sJ7AuQ026Z3_0q2PAUYHJynpI5zG2jbw1bfvcBmN3sGXFPc2tT5PdajhzDlvvA0tnAUTax_exg-2K67BpdO7xt6c8xCsH2er6VOxfJ4vppNlYYjEbbEpOWFIWsqd0cQyLgwlVSk0ExutNZHUlYYbQl2FtMSGIWttbQRHuK65ReUQ3Hd39yl-HmzTqm08pJAtFeGUY4ExZ3kLdVsmxaZJ1ql98h86HRVG6gRPZXjqBE-d4WUJ-yMxvv3h0ybtd_8J7zqhz6_--kjBBJe0_AbTaH1u
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2023_3300919
crossref_primary_10_1109_TCOMM_2024_3383849
crossref_primary_10_1186_s13634_024_01123_5
crossref_primary_10_1186_s13634_024_01132_4
Cites_doi 10.1109/TCOMM.2018.2859956
10.1109/GLOCOM.2014.7037162
10.1109/LCOMM.2019.2911286
10.1109/ITW48936.2021.9611512
10.1109/TIT.2019.2923992
10.1016/0020-0190(91)90219-8
10.1137/1.9781611974782.136
10.1109/TIT.2014.2321280
10.1109/TIT.2017.2700859
10.1109/18.179343
10.1145/2435204.2435207
10.1109/TIT.2019.2951693
10.14778/2535573.2488339
10.1109/TC.2005.200
10.1109/ISIT.2019.8849354
10.1109/TC.2007.70830
10.1109/TIT.2016.2553670
10.1109/TCOMM.2017.2766140
10.1109/ISIT.2006.261569
10.1109/TIT.2012.2208937
10.1109/12.364531
10.1109/LCOMM.2016.2530721
10.1109/CMPCON.1989.301912
10.1109/18.485722
10.1109/LCOMM.2018.2820007
10.1109/TIT.2021.3103330
10.1109/TIT.2016.2518663
10.1109/TIT.2014.2351404
10.1109/9780470544839.ch14
10.1109/TIT.2016.2524510
10.1109/ISIT.2017.8006646
10.1016/j.dam.2004.08.003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2022.3202140
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 125
ExternalDocumentID 10_1109_TIT_2022_3202140
9868795
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62071121; 61871136
  funderid: 10.13039/501100001809
– fundername: Research Grants Council of Hong Kong
  grantid: AoE/P-404/18
  funderid: 10.13039/501100002920
– fundername: Basic Research Enhancement Program of China
  grantid: 2021-JCJQ-JJ-0483
– fundername: National Key Research and Development Program of China
  grantid: 2020YFA0712300
  funderid: 10.13039/501100012166
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-b372609e57fca2e678c52438a68baaa295f3c7c25f40a91c60eeedc8701dd7e03
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922064900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 09 05:56:47 EST 2025
Sat Nov 29 03:31:49 EST 2025
Tue Nov 18 22:28:57 EST 2025
Wed Aug 27 02:14:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b372609e57fca2e678c52438a68baaa295f3c7c25f40a91c60eeedc8701dd7e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5711-9411
0000-0002-4501-4364
0000-0001-7328-9341
0000-0002-3592-1681
PQID 2757181176
PQPubID 36024
PageCount 19
ParticipantIDs crossref_primary_10_1109_TIT_2022_3202140
proquest_journals_2757181176
crossref_citationtrail_10_1109_TIT_2022_3202140
ieee_primary_9868795
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref17
MacWilliams (ref33) 1977; 16
ref16
ref19
ref18
You (ref1)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Corbett (ref6)
ref9
ref4
ref3
ref5
References_xml – ident: ref29
  doi: 10.1109/TCOMM.2018.2859956
– ident: ref13
  doi: 10.1109/GLOCOM.2014.7037162
– ident: ref16
  doi: 10.1109/LCOMM.2019.2911286
– ident: ref8
  doi: 10.1109/ITW48936.2021.9611512
– ident: ref25
  doi: 10.1109/TIT.2019.2923992
– ident: ref30
  doi: 10.1016/0020-0190(91)90219-8
– ident: ref21
  doi: 10.1137/1.9781611974782.136
– ident: ref17
  doi: 10.1109/TIT.2014.2321280
– ident: ref23
  doi: 10.1109/TIT.2017.2700859
– ident: ref12
  doi: 10.1109/18.179343
– ident: ref19
  doi: 10.1145/2435204.2435207
– ident: ref2
  doi: 10.1109/TIT.2019.2951693
– ident: ref20
  doi: 10.14778/2535573.2488339
– ident: ref14
  doi: 10.1109/TC.2005.200
– ident: ref26
  doi: 10.1109/ISIT.2019.8849354
– ident: ref7
  doi: 10.1109/TC.2007.70830
– ident: ref28
  doi: 10.1109/TIT.2016.2553670
– ident: ref15
  doi: 10.1109/TCOMM.2017.2766140
– start-page: 1
  volume-title: Proc. 3rd USENIX Conf. File Storage Technol.
  ident: ref6
  article-title: Row-diagonal parity for double disk failure correction
– ident: ref10
  doi: 10.1109/ISIT.2006.261569
– ident: ref18
  doi: 10.1109/TIT.2012.2208937
– ident: ref4
  doi: 10.1109/12.364531
– ident: ref32
  doi: 10.1109/LCOMM.2016.2530721
– ident: ref3
  doi: 10.1109/CMPCON.1989.301912
– ident: ref27
  doi: 10.1109/18.485722
– start-page: 1
  volume-title: Proc. IEEE Global Commun. Conf. (GLOBECOM)
  ident: ref1
  article-title: Generalized expanded-Blaum-Roth codes and their efficient encoding/decoding
– ident: ref5
  doi: 10.1109/LCOMM.2018.2820007
– ident: ref24
  doi: 10.1109/TIT.2021.3103330
– ident: ref35
  doi: 10.1109/TIT.2016.2518663
– volume: 16
  volume-title: The Theory of Error-Correcting Codes
  year: 1977
  ident: ref33
– ident: ref34
  doi: 10.1109/TIT.2014.2351404
– ident: ref11
  doi: 10.1109/9780470544839.ch14
– ident: ref22
  doi: 10.1109/TIT.2016.2524510
– ident: ref9
  doi: 10.1109/ISIT.2017.8006646
– ident: ref31
  doi: 10.1016/j.dam.2004.08.003
SSID ssj0014512
Score 2.4680011
Snippet An <inline-formula> <tex-math notation="LaTeX">(n,k) </tex-math></inline-formula> recoverable property array code is composed of <inline-formula> <tex-math...
An [Formula Omitted] recoverable property array code is composed of [Formula Omitted] arrays such that any [Formula Omitted] out of [Formula Omitted] columns...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms Array codes
Arrays
Codes
Data centers
Decoding
efficient encoding/decoding
Encoding
Encoding-Decoding
expanded-Blaum-Roth codes
expanded-independent-parity codes
Information retrieval
local repair
Maintenance engineering
Parameters
Prime numbers
Symbols
Title A Generalization of Array Codes With Local Properties and Efficient Encoding/Decoding
URI https://ieeexplore.ieee.org/document/9868795
https://www.proquest.com/docview/2757181176
Volume 69
WOSCitedRecordID wos000922064900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1W8aAHv1Zx_SIHL4J1m7RNmqPoioIsHlbcW0knCQrSyn4I_nuTNrsIiuAth6SkfZ2-ziR5D-BMK8UwRx6V6II8Ra6i3NIy0raMreXoKAUbswkxHObjsXzswMXyLIwxptl8Zi59s1nL1zXOfamsL3PuvbFXYEUI3p7VWq4YpBltlcGpC2CXcyyWJGPZH92PXCLI2KX3Cqe-zPGNghpPlR8f4oZdbrf-N69t2Ax_keSqhX0HOqbaha2FQwMJAbsLG9_kBrvwdEWCynQ4fElq664xUZ_kutZmSp5fZy_kwbMbefRF-olXWyWq0mTQKE24WZBBhbXnu_6NaRt78HQ7GF3fRcFWIUIm6SwqE-GSGGkyYVEx49gKM5YmueJ5qRx0MrMJCmSZTWMlKfLY3bBGF9hUa2HiZB9Wq7oyB0ASNDYuRekdjNNU89wyy1JNvSSM1Iz3oL940gUGzXFvffFWNLlHLAuHTeGxKQI2PThfjnhv9Tb-6Nv1WCz7BRh6cLwAswgBOS2YyBwLUyr44e-jjmDdO8m31ZVjWJ1N5uYE1vBj9jqdnDbv2hfbedFw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5igDQ4jF9DlJXhAxckQmPHceJjxYpAKxWHVvQWOc-2hoQS1BYk_nvsxK2Qhibt5oMdOfny8uU9298HcKaVYpijiEp0Qc5RqCi3tIy0LWNrBTpKwcZsIhuN8ulU3q_BxeosjDGm2XxmLn2zWcvXNb74UllP5sJ7Y3-BjZRzFrentVZrBjylrTY4dSHsso7lomQse-PbsUsFGbv0buHUFzo-kFDjqvLXp7jhl-ud_5vZLnwL_5Gk3wK_B2um2oedpUcDCSG7D9sfBAcPYNInQWc6HL8ktXXXmKk3clVrMycPj4s_ZOj5jdz7Mv3M660SVWkyaLQm3CzIoMLaM17vl2kb32FyPRhf3UTBWCFCJukiKpPMpTHSpJlFxYzjK0wZT3Il8lI58GRqE8yQpZbHSlIUsbthjS60qdaZiZNDWK_qyhwBSdDYuMxK72HMuRa5ZZZxTb0ojNRMdKC3fNIFBtVxb37xVDTZRywLh03hsSkCNh04X414bhU3_tH3wGOx6hdg6EB3CWYRQnJesCx1PExpJo4_H3UKX2_Gd8NieDv6_QO2vK98W2vpwvpi9mJOYBNfF4_z2c_mvXsH60jUtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generalization+of+Array+Codes+With+Local+Properties+and+Efficient+Encoding%2FDecoding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Hou%2C+Hanxu&rft.au=Han%2C+Yunghsiang+S&rft.au=Lee%2C+Patrick+P+C&rft.au=Wu%2C+You&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=1&rft.spage=107&rft_id=info:doi/10.1109%2FTIT.2022.3202140&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon