Tensor Wiener Filter
In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a linear time-invariant (LTI) filter. The input signal of a Wiener filter is one-dimensional while its associated least-squares solution, namely Wie...
Uložené v:
| Vydané v: | IEEE transactions on signal processing Ročník 70; s. 410 - 422 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a linear time-invariant (LTI) filter. The input signal of a Wiener filter is one-dimensional while its associated least-squares solution, namely Wiener-Hopf equation, involves a two-dimensional data-array, or correlation matrix. However, the actual match should often be carried out between a multi-dimensional filtered signal-sequence, which is the output of a multi-channel filter characterized as a linear-time-invariant MIMO (multi-input and multi-output) system, and a multi-dimensional desired signal-sequence simultaneously. In the presence of such a multi-channel filter, the solution to the corresponding Wiener filter, which we call MIMO Wiener-Hopf equation now, involves a correlation tensor. Therefore, we call this optimal multi-channel filter Tensor Wiener Filter (TWF). Due to lack of the pertinent mathematical framework of needed tensor operations, TWF has never been investigated so far. Now we would like to make the first-ever attempt to establish a new mathematical framework for TWF, which relies on the inverse of the correlation tensor. We propose the new parallel block-Jacobi tensor-inversion algorithm for this tensor inversion. A typical application of the new TWF approach is illustrated as a multi-channel linear predictor (MCLP) built upon a multi-channel autoregressive (MCAR) filter with multi-dimensional input data. Numerical experiments pertaining to seismic data, optical images, and macroeconomic time-series are conducted in comparison with other existing methods. The memory- and computational-complexities corresponding to our proposed parallel block-Jacobi tensor-inversion algorithm are also studied in this paper. |
|---|---|
| AbstractList | In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a linear time-invariant (LTI) filter. The input signal of a Wiener filter is one-dimensional while its associated least-squares solution, namely Wiener-Hopf equation, involves a two-dimensional data-array, or correlation matrix. However, the actual match should often be carried out between a multi-dimensional filtered signal-sequence, which is the output of a multi-channel filter characterized as a linear-time-invariant MIMO (multi-input and multi-output) system, and a multi-dimensional desired signal-sequence simultaneously. In the presence of such a multi-channel filter, the solution to the corresponding Wiener filter, which we call MIMO Wiener-Hopf equation now, involves a correlation tensor. Therefore, we call this optimal multi-channel filter Tensor Wiener Filter (TWF). Due to lack of the pertinent mathematical framework of needed tensor operations, TWF has never been investigated so far. Now we would like to make the first-ever attempt to establish a new mathematical framework for TWF, which relies on the inverse of the correlation tensor. We propose the new parallel block-Jacobi tensor-inversion algorithm for this tensor inversion. A typical application of the new TWF approach is illustrated as a multi-channel linear predictor (MCLP) built upon a multi-channel autoregressive (MCAR) filter with multi-dimensional input data. Numerical experiments pertaining to seismic data, optical images, and macroeconomic time-series are conducted in comparison with other existing methods. The memory- and computational-complexities corresponding to our proposed parallel block-Jacobi tensor-inversion algorithm are also studied in this paper. |
| Author | Wu, Hsiao-Chun Chang, Shih Yu |
| Author_xml | – sequence: 1 givenname: Shih Yu orcidid: 0000-0002-3576-0021 surname: Chang fullname: Chang, Shih Yu email: shihyu.chang@sjsu.edu organization: Department of Applied Data Science, San Jose State University, San Jose, CA, USA – sequence: 2 givenname: Hsiao-Chun orcidid: 0000-0002-0178-1246 surname: Wu fullname: Wu, Hsiao-Chun email: wu@ece.lsu.edu organization: School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA, USA |
| BookMark | eNp9kM9LwzAUgINMcJvePAheBp5bX9L8aI4ynAoDBSt6C2n6ChmznUl28L-3o8ODB0_vHb7vPfhmZNL1HRJyRSGnFPRt9fqSM2AsLygHxdgJmVLNaQZcycmwgygyUaqPMzKLcQNAOddySi4r7GIfFu8eOwyLld8mDOfktLXbiBfHOSdvq_tq-Zitnx-elnfrzDFNU2ZbB-BaiWUtG9sACNSAXKpWYwuoG-Gs4LrmtqHCWmgYHzgoHDa8VqUr5uRmvLsL_dceYzKbfh-64aVhktESGNdioORIudDHGLA1ziebfN-lYP3WUDCHAmYoYA4FzLHAIMIfcRf8pw3f_ynXo-IR8RfXUvESVPEDA25nHA |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TBC_2023_3278111 crossref_primary_10_1109_TBC_2024_3417342 crossref_primary_10_1109_TITS_2023_3299557 crossref_primary_10_1016_j_dsp_2024_104646 crossref_primary_10_1007_s43236_024_00788_3 crossref_primary_10_1016_j_csl_2025_101871 crossref_primary_10_1109_TCYB_2023_3265279 crossref_primary_10_1007_s40314_025_03241_8 crossref_primary_10_1016_j_ins_2022_11_137 crossref_primary_10_1109_JSEN_2024_3493893 crossref_primary_10_1109_JSEN_2024_3416161 crossref_primary_10_3390_fractalfract7120881 crossref_primary_10_1109_TGRS_2024_3369172 crossref_primary_10_1109_ACCESS_2024_3479093 crossref_primary_10_1016_j_jprocont_2025_103490 crossref_primary_10_1109_JSYST_2023_3327911 crossref_primary_10_1007_s13349_024_00800_1 crossref_primary_10_1016_j_aej_2025_08_020 crossref_primary_10_1109_LSP_2024_3475909 crossref_primary_10_1155_2024_6614609 crossref_primary_10_1109_TSP_2024_3495552 crossref_primary_10_1109_TCSI_2022_3217980 crossref_primary_10_1016_j_ijmecsci_2024_109075 crossref_primary_10_1109_TVT_2023_3270037 |
| Cites_doi | 10.1145/3219819.3220078 10.1002/nla.2102 10.1103/PhysRevLett.120.061602 10.1080/03081087.2018.1502252 10.1109/TSP.2008.917028 10.1137/07070111X 10.1109/TSP.2015.2469642 10.1142/S0129626415500036 10.1109/TKDE.2008.112 10.1109/TSP.2012.2197747 10.1007/s13398-020-00916-1 10.1080/01621459.2020.1855183 10.1109/TASL.2010.2070495 10.1109/TSP.2020.3028752 10.1109/TSP.2011.2164911 10.1002/nla.2086 10.1109/TSP.2017.2709272 10.1109/ISWCS.2019.8877123 10.1016/j.sigpro.2004.11.029 10.1109/TIP.2020.3000349 10.1109/TSP.2019.2928946 10.1016/j.sigpro.2005.12.016 10.1016/j.automatica.2018.06.015 10.1109/TSP.2017.2698369 10.1007/978-3-319-24486-0_2 10.1016/j.sigpro.2008.07.016 10.1109/TIP.2020.2995061 10.1109/TSP.2012.2223688 10.1007/s10589-020-00184-0 10.1137/S0895479898346995 10.1016/j.automatica.2017.06.019 10.1016/j.camwa.2018.11.001 10.1103/PhysRevD.97.106023 10.1111/1468-0262.00358 10.1007/s10569-015-9662-z 10.1109/ICCV.2017.607 10.1109/TCYB.2018.2802934 10.1145/2837614.2837659 10.1093/biomet/asw046 10.3390/rs9050452 10.1515/9783110365917 10.1109/TASLP.2016.2580943 10.1109/TSP.2017.2690524 10.1109/ICCV.2017.72 10.1002/0471200611 10.1109/ICDM.2008.89 10.1109/TSP.2015.2493990 10.1093/acprof:oso/9780199237197.003.0007 10.1109/CVPR.2018.00977 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2022.3140722 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 422 |
| ExternalDocumentID | 10_1109_TSP_2022_3140722 9674807 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Louisiana Board of Regents Research Competitiveness Subprogram grantid: LEQSF(2021-22)-RD-A-34 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-afc00cf6e8b6dad005e90e467f9ef0e9d5ca549b4ad15aa0d246da03ced4b78c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745507200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:25:03 EDT 2025 Sat Nov 29 04:10:54 EST 2025 Tue Nov 18 22:26:36 EST 2025 Wed Aug 27 03:02:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-afc00cf6e8b6dad005e90e467f9ef0e9d5ca549b4ad15aa0d246da03ced4b78c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0178-1246 0000-0002-3576-0021 |
| PQID | 2621802495 |
| PQPubID | 85478 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSP_2022_3140722 crossref_primary_10_1109_TSP_2022_3140722 ieee_primary_9674807 proquest_journals_2621802495 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref16 ref19 ref18 ref51 ref50 von archer (ref13) 2017 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Padia (ref17) 2020 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Widrow (ref34) 1985 Ashraphijuo (ref48) 2017; 18 |
| References_xml | – ident: ref4 doi: 10.1145/3219819.3220078 – ident: ref7 doi: 10.1002/nla.2102 – ident: ref18 doi: 10.1103/PhysRevLett.120.061602 – ident: ref42 doi: 10.1080/03081087.2018.1502252 – ident: ref24 doi: 10.1109/TSP.2008.917028 – ident: ref1 doi: 10.1137/07070111X – volume-title: Proc. Int. Conf. Princ. Knowl. Representation Reasoning year: 2020 ident: ref17 article-title: Knowledge graph inference using tensor embedding – ident: ref29 doi: 10.1109/TSP.2015.2469642 – ident: ref43 doi: 10.1142/S0129626415500036 – ident: ref2 doi: 10.1109/TKDE.2008.112 – ident: ref39 doi: 10.1109/TSP.2012.2197747 – ident: ref8 doi: 10.1007/s13398-020-00916-1 – ident: ref53 doi: 10.1080/01621459.2020.1855183 – ident: ref21 doi: 10.1109/TASL.2010.2070495 – ident: ref40 doi: 10.1109/TSP.2020.3028752 – ident: ref25 doi: 10.1109/TSP.2011.2164911 – ident: ref5 doi: 10.1002/nla.2086 – ident: ref36 doi: 10.1109/TSP.2017.2709272 – ident: ref27 doi: 10.1109/ISWCS.2019.8877123 – ident: ref46 doi: 10.1016/j.sigpro.2004.11.029 – start-page: 4339 year: 2017 ident: ref13 article-title: Tensor product decomposition methods applied to complex flow data publication-title: EGUGA – ident: ref31 doi: 10.1109/TIP.2020.3000349 – ident: ref35 doi: 10.1109/TSP.2019.2928946 – ident: ref23 doi: 10.1016/j.sigpro.2005.12.016 – ident: ref50 doi: 10.1016/j.automatica.2018.06.015 – ident: ref28 doi: 10.1109/TSP.2017.2698369 – ident: ref32 doi: 10.1007/978-3-319-24486-0_2 – ident: ref26 doi: 10.1016/j.sigpro.2008.07.016 – ident: ref30 doi: 10.1109/TIP.2020.2995061 – ident: ref37 doi: 10.1109/TSP.2012.2223688 – ident: ref6 doi: 10.1007/s10589-020-00184-0 – volume: 18 start-page: 3422 issue: 1 year: 2017 ident: ref48 article-title: Rank determination for low-rank data completion publication-title: J. Mach. Learn. Res. – ident: ref47 doi: 10.1137/S0895479898346995 – ident: ref49 doi: 10.1016/j.automatica.2017.06.019 – ident: ref41 doi: 10.1016/j.camwa.2018.11.001 – ident: ref20 doi: 10.1103/PhysRevD.97.106023 – volume-title: Adaptive Signal Processing year: 1985 ident: ref34 – ident: ref45 doi: 10.1111/1468-0262.00358 – ident: ref19 doi: 10.1007/s10569-015-9662-z – ident: ref10 doi: 10.1109/ICCV.2017.607 – ident: ref16 doi: 10.1109/TCYB.2018.2802934 – ident: ref12 doi: 10.1145/2837614.2837659 – ident: ref44 doi: 10.1093/biomet/asw046 – ident: ref15 doi: 10.3390/rs9050452 – ident: ref14 doi: 10.1515/9783110365917 – ident: ref22 doi: 10.1109/TASLP.2016.2580943 – ident: ref33 doi: 10.1109/TSP.2017.2690524 – ident: ref9 doi: 10.1109/ICCV.2017.72 – ident: ref51 doi: 10.1002/0471200611 – ident: ref3 doi: 10.1109/ICDM.2008.89 – ident: ref38 doi: 10.1109/TSP.2015.2493990 – ident: ref52 doi: 10.1093/acprof:oso/9780199237197.003.0007 – ident: ref11 doi: 10.1109/CVPR.2018.00977 |
| SSID | ssj0014496 |
| Score | 2.5112753 |
| Snippet | In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 410 |
| SubjectTerms | Algorithms Correlation analysis Filtering algorithms Invariants linear network of filters Mathematical analysis Mathematical models MIMO (multiinput and multi-output) Wiener-Hopf equation MIMO communication multi-channel autoregressive (MCAR) filter multi-channel linear predictor (MCLP) Optical filters parallel block-Jacobi tensor-inversion algorithm Signal processing Signal processing algorithms tensor inverse Tensor Wiener filter (TWF) Tensors Wiener filtering Wiener filters Wiener Hopf equations |
| Title | Tensor Wiener Filter |
| URI | https://ieeexplore.ieee.org/document/9674807 https://www.proquest.com/docview/2621802495 |
| Volume | 70 |
| WOSCitedRecordID | wos000745507200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1VarbIHL4Jr02y22RxFLJ5KwYq9hTyhIK304e93kt0uiiJ428PMsnzZJPNlMt8AXHOhPI6sSVkuFBKUXKUCI-VUc-Y5U3nGnY7NJvhoVEynYtyA27oWxjkXL5-5u_AYc_l2YTbhqKwnQmeMUDq-wzkva7XqjAFjsRcXhgtZmhd8uk1JEtGbPI-RCFKK_DTIgdFvW1DsqfJjIY67y_Dwf991BAdVFJncl8N-DA03P4H9L9qCLWhNkKAulsnrLAhLJ8NZSIufwsvwcfLwlFYtEFJDRX-dKm8IMX7gCj2wyuKUcYI4XNy8cJ44YXOjkOFppmw_V4pYytCOZMZZpnlhsjNozhdz14YEeR8NlaaeC4PmVlHqldaF0AT9db8DvS0q0lT64KFNxZuMPIEIiTjKgKOscOzATe3xXmpj_GHbCrjVdhVkHehugZfV5FlJOqBBlw6p2_nvXhewF95dnoR0oblebtwl7JqP9Wy1vIr_xSeSj7Pc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6KCurBVxWrVffgRXBtNs02m6OIpWItBVfsLeQJBWmlD3-_SXa7KIrgbQ8z7PJlk8yXyXwDcEmZsG5kVUxSJhxBSUXMXKQcS0osJSJtUyNDswk6GGSjERvW4LqqhTHGhMtn5sY_hly-nqqlPyprMd8Zw5eOr6eE4KSo1qpyBoSEblwuYGjHaUZHq6QkYq38eeioIMaOoXpBMPxtEwpdVX4sxWF_6e7-78v2YKeMI6PbYuD3oWYmB7D9RV2wDvXcUdTpLHode2npqDv2ifFDeOne53e9uGyCECvMkkUsrEJI2Y7JZEcL7SaNYci45c0yY5FhOlXCcTxJhE5SIZDGxNmhtjKaSJqp9hGsTaYTcwyRY37Y15paypQz1wJjK6TMmETOXyYNaK1Q4apUCPeNKt54YAqIcYcj9zjyEscGXFUe74U6xh-2dY9bZVdC1oDmCnheTp85xx3slekceTv53esCNnv5U5_3HwaPp7Dl31OcizRhbTFbmjPYUB-L8Xx2Hv6RTx4btyM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+Wiener+Filter&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Chang%2C+Shih+Yu&rft.au=Wu%2C+Hsiao-Chun&rft.date=2022&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=70&rft.spage=410&rft.epage=422&rft_id=info:doi/10.1109%2FTSP.2022.3140722&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2022_3140722 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |