Tensor Wiener Filter

In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a linear time-invariant (LTI) filter. The input signal of a Wiener filter is one-dimensional while its associated least-squares solution, namely Wie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 70; S. 410 - 422
Hauptverfasser: Chang, Shih Yu, Wu, Hsiao-Chun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a linear time-invariant (LTI) filter. The input signal of a Wiener filter is one-dimensional while its associated least-squares solution, namely Wiener-Hopf equation, involves a two-dimensional data-array, or correlation matrix. However, the actual match should often be carried out between a multi-dimensional filtered signal-sequence, which is the output of a multi-channel filter characterized as a linear-time-invariant MIMO (multi-input and multi-output) system, and a multi-dimensional desired signal-sequence simultaneously. In the presence of such a multi-channel filter, the solution to the corresponding Wiener filter, which we call MIMO Wiener-Hopf equation now, involves a correlation tensor. Therefore, we call this optimal multi-channel filter Tensor Wiener Filter (TWF). Due to lack of the pertinent mathematical framework of needed tensor operations, TWF has never been investigated so far. Now we would like to make the first-ever attempt to establish a new mathematical framework for TWF, which relies on the inverse of the correlation tensor. We propose the new parallel block-Jacobi tensor-inversion algorithm for this tensor inversion. A typical application of the new TWF approach is illustrated as a multi-channel linear predictor (MCLP) built upon a multi-channel autoregressive (MCAR) filter with multi-dimensional input data. Numerical experiments pertaining to seismic data, optical images, and macroeconomic time-series are conducted in comparison with other existing methods. The memory- and computational-complexities corresponding to our proposed parallel block-Jacobi tensor-inversion algorithm are also studied in this paper.
AbstractList In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a linear time-invariant (LTI) filter. The input signal of a Wiener filter is one-dimensional while its associated least-squares solution, namely Wiener-Hopf equation, involves a two-dimensional data-array, or correlation matrix. However, the actual match should often be carried out between a multi-dimensional filtered signal-sequence, which is the output of a multi-channel filter characterized as a linear-time-invariant MIMO (multi-input and multi-output) system, and a multi-dimensional desired signal-sequence simultaneously. In the presence of such a multi-channel filter, the solution to the corresponding Wiener filter, which we call MIMO Wiener-Hopf equation now, involves a correlation tensor. Therefore, we call this optimal multi-channel filter Tensor Wiener Filter (TWF). Due to lack of the pertinent mathematical framework of needed tensor operations, TWF has never been investigated so far. Now we would like to make the first-ever attempt to establish a new mathematical framework for TWF, which relies on the inverse of the correlation tensor. We propose the new parallel block-Jacobi tensor-inversion algorithm for this tensor inversion. A typical application of the new TWF approach is illustrated as a multi-channel linear predictor (MCLP) built upon a multi-channel autoregressive (MCAR) filter with multi-dimensional input data. Numerical experiments pertaining to seismic data, optical images, and macroeconomic time-series are conducted in comparison with other existing methods. The memory- and computational-complexities corresponding to our proposed parallel block-Jacobi tensor-inversion algorithm are also studied in this paper.
Author Wu, Hsiao-Chun
Chang, Shih Yu
Author_xml – sequence: 1
  givenname: Shih Yu
  orcidid: 0000-0002-3576-0021
  surname: Chang
  fullname: Chang, Shih Yu
  email: shihyu.chang@sjsu.edu
  organization: Department of Applied Data Science, San Jose State University, San Jose, CA, USA
– sequence: 2
  givenname: Hsiao-Chun
  orcidid: 0000-0002-0178-1246
  surname: Wu
  fullname: Wu, Hsiao-Chun
  email: wu@ece.lsu.edu
  organization: School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA, USA
BookMark eNp9kM9LwzAUgINMcJvePAheBp5bX9L8aI4ynAoDBSt6C2n6ChmznUl28L-3o8ODB0_vHb7vPfhmZNL1HRJyRSGnFPRt9fqSM2AsLygHxdgJmVLNaQZcycmwgygyUaqPMzKLcQNAOddySi4r7GIfFu8eOwyLld8mDOfktLXbiBfHOSdvq_tq-Zitnx-elnfrzDFNU2ZbB-BaiWUtG9sACNSAXKpWYwuoG-Gs4LrmtqHCWmgYHzgoHDa8VqUr5uRmvLsL_dceYzKbfh-64aVhktESGNdioORIudDHGLA1ziebfN-lYP3WUDCHAmYoYA4FzLHAIMIfcRf8pw3f_ynXo-IR8RfXUvESVPEDA25nHA
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TBC_2023_3278111
crossref_primary_10_1109_TBC_2024_3417342
crossref_primary_10_1109_TITS_2023_3299557
crossref_primary_10_1016_j_dsp_2024_104646
crossref_primary_10_1007_s43236_024_00788_3
crossref_primary_10_1016_j_csl_2025_101871
crossref_primary_10_1109_TCYB_2023_3265279
crossref_primary_10_1007_s40314_025_03241_8
crossref_primary_10_1016_j_ins_2022_11_137
crossref_primary_10_1109_JSEN_2024_3493893
crossref_primary_10_1109_JSEN_2024_3416161
crossref_primary_10_3390_fractalfract7120881
crossref_primary_10_1109_TGRS_2024_3369172
crossref_primary_10_1109_ACCESS_2024_3479093
crossref_primary_10_1016_j_jprocont_2025_103490
crossref_primary_10_1109_JSYST_2023_3327911
crossref_primary_10_1007_s13349_024_00800_1
crossref_primary_10_1016_j_aej_2025_08_020
crossref_primary_10_1109_LSP_2024_3475909
crossref_primary_10_1155_2024_6614609
crossref_primary_10_1109_TSP_2024_3495552
crossref_primary_10_1109_TCSI_2022_3217980
crossref_primary_10_1016_j_ijmecsci_2024_109075
crossref_primary_10_1109_TVT_2023_3270037
Cites_doi 10.1145/3219819.3220078
10.1002/nla.2102
10.1103/PhysRevLett.120.061602
10.1080/03081087.2018.1502252
10.1109/TSP.2008.917028
10.1137/07070111X
10.1109/TSP.2015.2469642
10.1142/S0129626415500036
10.1109/TKDE.2008.112
10.1109/TSP.2012.2197747
10.1007/s13398-020-00916-1
10.1080/01621459.2020.1855183
10.1109/TASL.2010.2070495
10.1109/TSP.2020.3028752
10.1109/TSP.2011.2164911
10.1002/nla.2086
10.1109/TSP.2017.2709272
10.1109/ISWCS.2019.8877123
10.1016/j.sigpro.2004.11.029
10.1109/TIP.2020.3000349
10.1109/TSP.2019.2928946
10.1016/j.sigpro.2005.12.016
10.1016/j.automatica.2018.06.015
10.1109/TSP.2017.2698369
10.1007/978-3-319-24486-0_2
10.1016/j.sigpro.2008.07.016
10.1109/TIP.2020.2995061
10.1109/TSP.2012.2223688
10.1007/s10589-020-00184-0
10.1137/S0895479898346995
10.1016/j.automatica.2017.06.019
10.1016/j.camwa.2018.11.001
10.1103/PhysRevD.97.106023
10.1111/1468-0262.00358
10.1007/s10569-015-9662-z
10.1109/ICCV.2017.607
10.1109/TCYB.2018.2802934
10.1145/2837614.2837659
10.1093/biomet/asw046
10.3390/rs9050452
10.1515/9783110365917
10.1109/TASLP.2016.2580943
10.1109/TSP.2017.2690524
10.1109/ICCV.2017.72
10.1002/0471200611
10.1109/ICDM.2008.89
10.1109/TSP.2015.2493990
10.1093/acprof:oso/9780199237197.003.0007
10.1109/CVPR.2018.00977
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2022.3140722
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 422
ExternalDocumentID 10_1109_TSP_2022_3140722
9674807
Genre orig-research
GrantInformation_xml – fundername: Louisiana Board of Regents Research Competitiveness Subprogram
  grantid: LEQSF(2021-22)-RD-A-34
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-afc00cf6e8b6dad005e90e467f9ef0e9d5ca549b4ad15aa0d246da03ced4b78c3
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745507200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:25:03 EDT 2025
Sat Nov 29 04:10:54 EST 2025
Tue Nov 18 22:26:36 EST 2025
Wed Aug 27 03:02:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-afc00cf6e8b6dad005e90e467f9ef0e9d5ca549b4ad15aa0d246da03ced4b78c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0178-1246
0000-0002-3576-0021
PQID 2621802495
PQPubID 85478
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TSP_2022_3140722
crossref_primary_10_1109_TSP_2022_3140722
ieee_primary_9674807
proquest_journals_2621802495
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref16
ref19
ref18
ref51
ref50
von archer (ref13) 2017
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Padia (ref17) 2020
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Widrow (ref34) 1985
Ashraphijuo (ref48) 2017; 18
References_xml – ident: ref4
  doi: 10.1145/3219819.3220078
– ident: ref7
  doi: 10.1002/nla.2102
– ident: ref18
  doi: 10.1103/PhysRevLett.120.061602
– ident: ref42
  doi: 10.1080/03081087.2018.1502252
– ident: ref24
  doi: 10.1109/TSP.2008.917028
– ident: ref1
  doi: 10.1137/07070111X
– volume-title: Proc. Int. Conf. Princ. Knowl. Representation Reasoning
  year: 2020
  ident: ref17
  article-title: Knowledge graph inference using tensor embedding
– ident: ref29
  doi: 10.1109/TSP.2015.2469642
– ident: ref43
  doi: 10.1142/S0129626415500036
– ident: ref2
  doi: 10.1109/TKDE.2008.112
– ident: ref39
  doi: 10.1109/TSP.2012.2197747
– ident: ref8
  doi: 10.1007/s13398-020-00916-1
– ident: ref53
  doi: 10.1080/01621459.2020.1855183
– ident: ref21
  doi: 10.1109/TASL.2010.2070495
– ident: ref40
  doi: 10.1109/TSP.2020.3028752
– ident: ref25
  doi: 10.1109/TSP.2011.2164911
– ident: ref5
  doi: 10.1002/nla.2086
– ident: ref36
  doi: 10.1109/TSP.2017.2709272
– ident: ref27
  doi: 10.1109/ISWCS.2019.8877123
– ident: ref46
  doi: 10.1016/j.sigpro.2004.11.029
– start-page: 4339
  year: 2017
  ident: ref13
  article-title: Tensor product decomposition methods applied to complex flow data
  publication-title: EGUGA
– ident: ref31
  doi: 10.1109/TIP.2020.3000349
– ident: ref35
  doi: 10.1109/TSP.2019.2928946
– ident: ref23
  doi: 10.1016/j.sigpro.2005.12.016
– ident: ref50
  doi: 10.1016/j.automatica.2018.06.015
– ident: ref28
  doi: 10.1109/TSP.2017.2698369
– ident: ref32
  doi: 10.1007/978-3-319-24486-0_2
– ident: ref26
  doi: 10.1016/j.sigpro.2008.07.016
– ident: ref30
  doi: 10.1109/TIP.2020.2995061
– ident: ref37
  doi: 10.1109/TSP.2012.2223688
– ident: ref6
  doi: 10.1007/s10589-020-00184-0
– volume: 18
  start-page: 3422
  issue: 1
  year: 2017
  ident: ref48
  article-title: Rank determination for low-rank data completion
  publication-title: J. Mach. Learn. Res.
– ident: ref47
  doi: 10.1137/S0895479898346995
– ident: ref49
  doi: 10.1016/j.automatica.2017.06.019
– ident: ref41
  doi: 10.1016/j.camwa.2018.11.001
– ident: ref20
  doi: 10.1103/PhysRevD.97.106023
– volume-title: Adaptive Signal Processing
  year: 1985
  ident: ref34
– ident: ref45
  doi: 10.1111/1468-0262.00358
– ident: ref19
  doi: 10.1007/s10569-015-9662-z
– ident: ref10
  doi: 10.1109/ICCV.2017.607
– ident: ref16
  doi: 10.1109/TCYB.2018.2802934
– ident: ref12
  doi: 10.1145/2837614.2837659
– ident: ref44
  doi: 10.1093/biomet/asw046
– ident: ref15
  doi: 10.3390/rs9050452
– ident: ref14
  doi: 10.1515/9783110365917
– ident: ref22
  doi: 10.1109/TASLP.2016.2580943
– ident: ref33
  doi: 10.1109/TSP.2017.2690524
– ident: ref9
  doi: 10.1109/ICCV.2017.72
– ident: ref51
  doi: 10.1002/0471200611
– ident: ref3
  doi: 10.1109/ICDM.2008.89
– ident: ref38
  doi: 10.1109/TSP.2015.2493990
– ident: ref52
  doi: 10.1093/acprof:oso/9780199237197.003.0007
– ident: ref11
  doi: 10.1109/CVPR.2018.00977
SSID ssj0014496
Score 2.5112753
Snippet In signal processing and data analytics, Wiener filter is a classical powerful tool to transform an input signal to match a desired or target signal by a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 410
SubjectTerms Algorithms
Correlation analysis
Filtering algorithms
Invariants
linear network of filters
Mathematical analysis
Mathematical models
MIMO (multiinput and multi-output) Wiener-Hopf equation
MIMO communication
multi-channel autoregressive (MCAR) filter
multi-channel linear predictor (MCLP)
Optical filters
parallel block-Jacobi tensor-inversion algorithm
Signal processing
Signal processing algorithms
tensor inverse
Tensor Wiener filter (TWF)
Tensors
Wiener filtering
Wiener filters
Wiener Hopf equations
Title Tensor Wiener Filter
URI https://ieeexplore.ieee.org/document/9674807
https://www.proquest.com/docview/2621802495
Volume 70
WOSCitedRecordID wos000745507200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3M4YM--DXF6ZQ--CIYl6btkjyKOHyQMXDq3kKa3MJAtrEPf79J2hVFEXwr9CaU0-bj5PaeA3DFqEApTexJDie-1pponVES56agGWapDQp8r098MBDjsRw24KauhUHE8PMZ3vrLkMu3M7P2R2Vd6Z0xfOn4Fue8rNWqMwZpGry43HYhIZng401Kksru6HnoiCBjjp96OTD2bQkKnio_JuKwuvT3__dcB7BX7SKju_K1H0IDp0ew-0VbsAWtkSOos0X0NvHC0lF_4tPix_DSfxjdP5LKAoEYJuMV0YWh1BQ9FHnPauuGDEqKbnIrJBYUpc2MdgwvT7WNM62pZamLo4lBm-ZcmOQEmtPZFE8hyrURMXd8Lnf3rOSOurhOTSIYN7agug3dDSrKVPrg3qbiXQWeQKVyOCqPo6pwbMN13WJeamP8EdvyuNVxFWRt6GyAV9XgWSrWY16XzlG3s99bncOO77s8CelAc7VY4wVsm4_VZLm4DN_FJ--Ks6I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL2MKagPfk1xOrUPvgjWpWm6No8ijolzDKy6t5AmtzCQTfbh7zdJu6Iogm-F3rTltPk4ub3nAFxQkiDnKrAkJ_ZtrbUvZUT8IFM5iTBi2inwvfTjwSAZjfiwBldVLQwiup_P8Noeuly-nqql3Sprc-uMYUvH1yLGaFBUa1U5A8acG5dZMIR-lMSjVVKS8Hb6NDRUkFLDUK0gGP02CTlXlR9DsZtfujv_e7Jd2C7Xkd5N8eL3oIaTfdj6oi7YgEZqKOp05r2OrbS01x3bxPgBPHfv0tueX5og-IryYOHLXBGi8g4mWUdLbToNcoJmeMs55gS5jpQ0HC9jUgeRlERTZuJIqFCzLE5UeAj1yXSCR-BlUiVBbBhdZs5pHhvyYi6qwoTGSudENqG9QkWoUiHcGlW8CccUCBcGR2FxFCWOTbisWrwX6hh_xDYsblVcCVkTWivgRdl95oJ2qFWmM-Tt-PdW57DRSx_7on8_eDiBTXufYl-kBfXFbImnsK4-FuP57Mx9I593yrbp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+Wiener+Filter&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Chang%2C+Shih+Yu&rft.au=Wu%2C+Hsiao-Chun&rft.date=2022&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=70&rft.spage=410&rft.epage=422&rft_id=info:doi/10.1109%2FTSP.2022.3140722&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2022_3140722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon