Nonasymptotic and Second-Order Achievability Bounds for Coding With Side-Information

We present a novel nonasymptotic or finite blocklength achievability bounds for three side-information problems in network information theory. These include: 1) the Wyner-Ahlswede-Körner (WAK) problem of almost-lossless source coding with rate-limited side-information; 2) the Wyner-Ziv (WZ) problem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 61; číslo 4; s. 1574 - 1605
Hlavní autoři: Watanabe, Shun, Kuzuoka, Shigeaki, Tan, Vincent Y. F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a novel nonasymptotic or finite blocklength achievability bounds for three side-information problems in network information theory. These include: 1) the Wyner-Ahlswede-Körner (WAK) problem of almost-lossless source coding with rate-limited side-information; 2) the Wyner-Ziv (WZ) problem of lossy source coding with side-information at the decoder; and 3) the Gel'fand-Pinsker (GP) problem of channel coding with noncausal state information available at the encoder. The bounds are proved using ideas from channel simulation and channel resolvability. Our bounds for all three problems improve on all previous nonasymptotic bounds on the error probability of the WAK, WZ, and GP problems-in particular those derived by Verdú. Using our novel nonasymptotic bounds, we recover the general formulas for the optimal rates of these side-information problems. Finally, we also present achievable second-order coding rates by applying the multidimensional Berry-Esséen theorem to our new nonasymptotic bounds. Numerical results show that the second-order coding rates obtained using our nonasymptotic achievability bounds are superior to those obtained using existing finite blocklength bounds.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2015.2400994