Energy management of hybrid energy system sources based on machine learning classification algorithms
•Solar and wind along with gasoline and diesel sources are combined for HES.•Different algorithms are applied to forecast the optimal energy source supplier.•Optimal SAM is achieved based on supervised algorithms.•Algorithms are ranked based on their performance. Hybrid energy systems (HES) that con...
Gespeichert in:
| Veröffentlicht in: | Electric power systems research Jg. 199; S. 107436 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.10.2021
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0378-7796, 1873-2046 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Solar and wind along with gasoline and diesel sources are combined for HES.•Different algorithms are applied to forecast the optimal energy source supplier.•Optimal SAM is achieved based on supervised algorithms.•Algorithms are ranked based on their performance.
Hybrid energy systems (HES) that contain renewable energy sources, such as wind and solar energy help to minimize CO2 emissions. Therefore, studying these systems to improve their performance has become one of the critical needs these days due to the environmental crisis. Within HES, energy management (EM) of HES is an essential topic that has been covered in detail by numerous studies, as errors in EM can lead to HES blackouts. Recent research has experimented with energy management strategy (EMS) to achieve optimal EM. This work aims to generate a robust forecasting model for one hour ahead of EM. The present research work has two main objectives. The first objective is to determine which energy source should supply the demand side, using different machine-learning algorithms such as Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes (Gaussian NB) and K-Nearest Neighbors (KNN). The second objective is to compare the results of these algorithms to choose the algorithm with the best performance and to rank them based on performance as well as accuracy. The work is validated using different algorithms. The results show that DT algorithm has achieved the best performance compared to the RF and Gaussian NB algorithms. KNN algorithm gives the lowest accuracy especially over class 3. The results proof that RF, DT, and Gaussian NB algorithms are reliable. |
|---|---|
| AbstractList | Hybrid energy systems (HES) that contain renewable energy sources, such as wind and solar energy help to minimize CO2 emissions. Therefore, studying these systems to improve their performance has become one of the critical needs these days due to the environmental crisis. Within HES, energy management (EM) of HES is an essential topic that has been covered in detail by numerous studies, as errors in EM can lead to HES blackouts. Recent research has experimented with energy management strategy (EMS) to achieve optimal EM. This work aims to generate a robust forecasting model for one hour ahead of EM. The present research work has two main objectives. The first objective is to determine which energy source should supply the demand side, using different machine-learning algorithms such as Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes (Gaussian NB) and K-Nearest Neighbors (KNN). The second objective is to compare the results of these algorithms to choose the algorithm with the best performance and to rank them based on performance as well as accuracy. The work is validated using different algorithms. The results show that DT algorithm has achieved the best performance compared to the RF and Gaussian NB algorithms. KNN algorithm gives the lowest accuracy especially over class 3. The results proof that RF, DT, and Gaussian NB algorithms are reliable. •Solar and wind along with gasoline and diesel sources are combined for HES.•Different algorithms are applied to forecast the optimal energy source supplier.•Optimal SAM is achieved based on supervised algorithms.•Algorithms are ranked based on their performance. Hybrid energy systems (HES) that contain renewable energy sources, such as wind and solar energy help to minimize CO2 emissions. Therefore, studying these systems to improve their performance has become one of the critical needs these days due to the environmental crisis. Within HES, energy management (EM) of HES is an essential topic that has been covered in detail by numerous studies, as errors in EM can lead to HES blackouts. Recent research has experimented with energy management strategy (EMS) to achieve optimal EM. This work aims to generate a robust forecasting model for one hour ahead of EM. The present research work has two main objectives. The first objective is to determine which energy source should supply the demand side, using different machine-learning algorithms such as Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes (Gaussian NB) and K-Nearest Neighbors (KNN). The second objective is to compare the results of these algorithms to choose the algorithm with the best performance and to rank them based on performance as well as accuracy. The work is validated using different algorithms. The results show that DT algorithm has achieved the best performance compared to the RF and Gaussian NB algorithms. KNN algorithm gives the lowest accuracy especially over class 3. The results proof that RF, DT, and Gaussian NB algorithms are reliable. |
| ArticleNumber | 107436 |
| Author | Musbah, Hmeda Little, Timothy A. Aly, Hamed H. |
| Author_xml | – sequence: 1 givenname: Hmeda orcidid: 0000-0002-2159-5029 surname: Musbah fullname: Musbah, Hmeda email: Hm392855@dal.ca – sequence: 2 givenname: Hamed H. orcidid: 0000-0003-2676-081X surname: Aly fullname: Aly, Hamed H. email: hamed.aly@dal.ca – sequence: 3 givenname: Timothy A. surname: Little fullname: Little, Timothy A. email: Timothy.Little@Dal.Ca |
| BookMark | eNp9kE1rGzEQQEVxIE6aP5CToOd1R9rVahd6KcZNA4Zc0rOQpZEts6t1Jbngf1-521MOPg3MzJuP90AWYQpIyDODFQPWfj2u8JTiigNnJSGbuv1ElqyTdcWhaRdkCbXsKin79p48pHQEgLaXYklwEzDuL3TUQe9xxJDp5OjhsoveUpxr6ZIyjjRN52gw0Z1OaOkUCmMOPiAdUMfgw56aQafknTc6-1LXw36KPh_G9JncOT0kfPofH8mvH5v39c9q-_byuv6-rQzvWa60qzWzAF3TgHBSCGd7aMG2rnHCSifZrhYcLds12LMOpe6g16gd1yD6TtSP5Ms89xSn32dMWR3L0aGsVFx0RQyvAUoXn7tMnFKK6NQp-lHHi2KgrjrVUV11qqtONessUPcBMj7_-zNH7Yfb6LcZxfL6H49RJeMxGLQ-osnKTv4W_hfHSJRO |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2023_04_006 crossref_primary_10_1016_j_mtcomm_2024_109150 crossref_primary_10_1080_15325008_2024_2338557 crossref_primary_10_1016_j_conbuildmat_2023_133148 crossref_primary_10_1016_j_apenergy_2025_125355 crossref_primary_10_3390_en17112605 crossref_primary_10_1007_s13762_024_06017_5 crossref_primary_10_1007_s00521_024_10805_y crossref_primary_10_1007_s10845_024_02460_w crossref_primary_10_1016_j_enbuild_2025_115478 crossref_primary_10_1016_j_bspc_2023_104700 crossref_primary_10_1016_j_est_2025_115719 crossref_primary_10_1038_s41598_025_12888_6 crossref_primary_10_1007_s10668_024_04988_6 crossref_primary_10_3390_w17070939 crossref_primary_10_1016_j_egyr_2022_11_195 crossref_primary_10_3390_jlpea14040059 crossref_primary_10_1080_10407790_2023_2280208 crossref_primary_10_3390_su14084832 crossref_primary_10_1049_gtd2_13183 crossref_primary_10_1155_2022_2062944 crossref_primary_10_1016_j_nexres_2024_100119 crossref_primary_10_3390_asi5010018 crossref_primary_10_61453_joit_v2023no33 crossref_primary_10_1016_j_epsr_2022_107917 crossref_primary_10_3390_en17236027 crossref_primary_10_1063_5_0237246 crossref_primary_10_1155_2024_1050785 crossref_primary_10_1007_s11269_022_03277_z crossref_primary_10_3390_buildings14072169 crossref_primary_10_1016_j_mtcomm_2024_110511 crossref_primary_10_1007_s00521_022_07856_4 crossref_primary_10_3390_app142311112 crossref_primary_10_1007_s13198_024_02668_2 crossref_primary_10_1016_j_artmed_2023_102492 crossref_primary_10_1155_2022_7797488 |
| Cites_doi | 10.1016/j.jclepro.2018.08.207 10.3390/app10175975 10.3390/info11010032 10.1177/0309524X19849867 10.1109/JOE.2013.2241934 10.22606/ijper.2017.12003 10.1016/j.procs.2015.04.160 10.1007/s10100-018-0531-1 10.1016/j.oceaneng.2020.108254 10.1016/j.procs.2017.09.045 10.1016/j.energy.2020.118773 10.1016/j.apenergy.2018.11.012 10.1186/s40064-016-2941-7 10.1023/A:1010933404324 10.1007/s00521-014-1809-4 10.1016/j.rser.2016.11.026 10.22214/ijraset.2017.4132 10.1631/jzus.A0820042 10.1016/j.renene.2017.11.011 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier Science Ltd. Oct 2021 |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Science Ltd. Oct 2021 |
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1016/j.epsr.2021.107436 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2046 |
| ExternalDocumentID | 10_1016_j_epsr_2021_107436 S037877962100417X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-af3a1d0084405f755fd9060d6f4f5d7f71b352ed1b4e918e7a809aeaf2a059853 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685350200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Sun Nov 09 08:48:30 EST 2025 Tue Nov 18 22:35:04 EST 2025 Sat Nov 29 07:19:52 EST 2025 Fri Feb 23 02:42:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Confusion matrix Scheduling and managing Machine learning Hybrid energy systems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c291t-af3a1d0084405f755fd9060d6f4f5d7f71b352ed1b4e918e7a809aeaf2a059853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2159-5029 0000-0003-2676-081X |
| PQID | 2581072300 |
| PQPubID | 2047565 |
| ParticipantIDs | proquest_journals_2581072300 crossref_primary_10_1016_j_epsr_2021_107436 crossref_citationtrail_10_1016_j_epsr_2021_107436 elsevier_sciencedirect_doi_10_1016_j_epsr_2021_107436 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Karampelas, Vita, Pavlatos, Mladenov, Ekonomou (bib0021) 2010 Aly (bib0040) 2019; 147 Hu, Huang, Ke, Tsai (bib0035) 2016; 5 Tian, Wang, Ren (bib0017) 2020; 44 Lai, Chang, Chen, Pai (bib0026) 2020; 10 Aly (bib0003) 2020; 41 Eseye, Zhang, Zheng (bib0014) 2018; 118 Al Ghaithi, Fotis, Vita (bib0023) 2017; 1 Gupta (bib0027) 2021 Mehmood (bib0008) 2014 Nalcaci, Özmen, Weber (bib0009) 2019; 27 Fernández-Delgado, Cernadas, Barro, Amorim (bib0029) 2014; 15 Reinders, Ackermann, Yang, Rosenhahn (bib0033) 2019 Kamel, Abdulah, Al-Tuwaijari (bib0032) 2019 Çevik, Çunkaş (bib0006) 2015; 26 Aly (bib0002) 2020; 182 Pappas, Ekonomou, Moussas, Karampelas, Katsikas (bib0020) 2008; 9 Aburiyana, El-Hawary (bib0004) 2017 Yan, Shen, Wang, Zhou, Xu, Mo (bib0018) 2020; 11 Bayindir, Yesilbudak, Colak, Genc (bib0025) 2017 Breiman (bib0028) 2001; 45 Jiang, Yang, Heng (bib0016) 2019; 235 Ramaswamy, Sadhu (bib0015) 2017 Kotu, Deshpande (bib0034) 2015 Zhang, Beaudin, Zareipour, Wood (bib0013) 2014 Bhatia, Vandana (bib0036) 2010; 8 Akosa (bib0038) 2017 Wasilewski, Baczynski (bib0011) 2017; 69 Aly (bib0039) 2020; 218 E. Frank, A. Mark, H. Ian, The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, (2016). Gupta, Pal (bib0010) 2017; 5 Gayathri, Sumathi (bib0031) 2016; 148 Baliyan, Gaurav, Mishra (bib0007) 2015; 48 Misak, Burianek, Stuchly (bib0012) 2016 Aly (bib0001) 2020; 213 Chen, Liaw, Breiman (bib0030) 2004; 110 Alzahrani, Shamsi, Dagli, Ferdowsi (bib0019) 2017; 114 Aly, El-Hawary (bib0022) 2014; 39 Ahmad, Reynolds, Rezgui (bib0024) 2018 Musbah, El-Hawary (bib0005) 2019 Zhang (10.1016/j.epsr.2021.107436_bib0013) 2014 Ramaswamy (10.1016/j.epsr.2021.107436_bib0015) 2017 Al Ghaithi (10.1016/j.epsr.2021.107436_bib0023) 2017; 1 Alzahrani (10.1016/j.epsr.2021.107436_bib0019) 2017; 114 Bayindir (10.1016/j.epsr.2021.107436_bib0025) 2017 Chen (10.1016/j.epsr.2021.107436_bib0030) 2004; 110 Hu (10.1016/j.epsr.2021.107436_bib0035) 2016; 5 Wasilewski (10.1016/j.epsr.2021.107436_bib0011) 2017; 69 Reinders (10.1016/j.epsr.2021.107436_bib0033) 2019 10.1016/j.epsr.2021.107436_bib0037 Gupta (10.1016/j.epsr.2021.107436_bib0010) 2017; 5 Baliyan (10.1016/j.epsr.2021.107436_bib0007) 2015; 48 Gayathri (10.1016/j.epsr.2021.107436_bib0031) 2016; 148 Aly (10.1016/j.epsr.2021.107436_bib0039) 2020; 218 Breiman (10.1016/j.epsr.2021.107436_bib0028) 2001; 45 Mehmood (10.1016/j.epsr.2021.107436_bib0008) 2014 Fernández-Delgado (10.1016/j.epsr.2021.107436_bib0029) 2014; 15 Nalcaci (10.1016/j.epsr.2021.107436_bib0009) 2019; 27 Karampelas (10.1016/j.epsr.2021.107436_bib0021) 2010 Aly (10.1016/j.epsr.2021.107436_bib0003) 2020; 41 Çevik (10.1016/j.epsr.2021.107436_bib0006) 2015; 26 Ahmad (10.1016/j.epsr.2021.107436_bib0024) 2018 Kotu (10.1016/j.epsr.2021.107436_bib0034) 2015 Aly (10.1016/j.epsr.2021.107436_bib0001) 2020; 213 Gupta (10.1016/j.epsr.2021.107436_bib0027) 2021 Misak (10.1016/j.epsr.2021.107436_bib0012) 2016 Musbah (10.1016/j.epsr.2021.107436_bib0005) 2019 Aly (10.1016/j.epsr.2021.107436_bib0022) 2014; 39 Lai (10.1016/j.epsr.2021.107436_bib0026) 2020; 10 Kamel (10.1016/j.epsr.2021.107436_bib0032) 2019 Aly (10.1016/j.epsr.2021.107436_bib0040) 2019; 147 Akosa (10.1016/j.epsr.2021.107436_bib0038) 2017 Eseye (10.1016/j.epsr.2021.107436_bib0014) 2018; 118 Tian (10.1016/j.epsr.2021.107436_bib0017) 2020; 44 Bhatia (10.1016/j.epsr.2021.107436_bib0036) 2010; 8 Aly (10.1016/j.epsr.2021.107436_bib0002) 2020; 182 Aburiyana (10.1016/j.epsr.2021.107436_bib0004) 2017 Yan (10.1016/j.epsr.2021.107436_bib0018) 2020; 11 Pappas (10.1016/j.epsr.2021.107436_bib0020) 2008; 9 Jiang (10.1016/j.epsr.2021.107436_bib0016) 2019; 235 |
| References_xml | – volume: 110 start-page: 24 year: 2004 ident: bib0030 publication-title: Using Random Forest to Learn Imbalanced Data – volume: 69 start-page: 177 year: 2017 end-page: 187 ident: bib0011 article-title: Short-term electric energy production forecasting at wind power plants in Pareto-optimality context publication-title: Renew. Sustain. Energy Rev. – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: bib0029 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 1724 year: 2008 end-page: 1730 ident: bib0020 article-title: Adaptive load forecasting of the Hellenic electric grid publication-title: J. Zhejiang Univ. Sci. A – start-page: 1 year: 2017 end-page: 7 ident: bib0004 article-title: An overview of forecasting techniques for load, wind and solar powers publication-title: IEEE Electr. Power Energy Conf. – volume: 44 start-page: 152 year: 2020 end-page: 167 ident: bib0017 article-title: Short-term wind speed forecasting based on autoregressive moving average with echo state network compensation publication-title: Wind Eng. – start-page: 1 year: 2014 end-page: 6 ident: bib0013 article-title: Forecasting solar photovoltaic power production at the aggregated system level publication-title: Proceedings of the IEEE North American Power Symposium – volume: 11 start-page: 32 year: 2020 ident: bib0018 article-title: Short-term solar irradiance forecasting based on a hybrid deep learning methodology publication-title: Information – start-page: 1 year: 2019 end-page: 4 ident: bib0005 article-title: SARIMA model forecasting of short-term electrical load data augmented by fast Fourier transform seasonality detection publication-title: Proceedings of the IEEE Canadian Conference of Electrical and Computer Engineering (CCECE) – volume: 27 start-page: 1033 year: 2019 end-page: 1049 ident: bib0009 article-title: Long-term load forecasting: models based on MARS, ANN and LR methods publication-title: Cent. Eur. J. Oper. Res. – volume: 235 start-page: 786 year: 2019 end-page: 801 ident: bib0016 article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting publication-title: Appl. Energy – year: 2015 ident: bib0034 article-title: Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner – start-page: 244 year: 2017 end-page: 248 ident: bib0015 article-title: Forecasting PV power from solar irradiance and temperature using neural networks publication-title: Proceedings of the IEEE, International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) – volume: 148 start-page: 16 year: 2016 end-page: 21 ident: bib0031 article-title: An automated technique using Gaussian naïve Bayes classifier to classify breast cancer publication-title: Int. J. Comput. Appl. – reference: E. Frank, A. Mark, H. Ian, The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, (2016). – start-page: 2 year: 2017 end-page: 5 ident: bib0038 article-title: Predictive accuracy: a misleading performance measure for highly imbalanced data publication-title: Proceedings of the SAS Global Forum – volume: 41 year: 2020 ident: bib0003 article-title: An intelligent hybrid model of neuro wavelet, time series and recurrent Kalman filter for wind speed forecasting publication-title: Elsevier J. Sustain. Energy Technol. Assess. – year: 2021 ident: bib0027 article-title: Introduction to Machine Learning in the Cloud with Python: Concepts and Practices – volume: 147 start-page: 1554 year: 2019 end-page: 1564 ident: bib0040 article-title: A novel approach for tidal currents harmonic constitutions forecasting hybrid models based on clustering techniques for smart grid publication-title: Renew. Energy – year: 2014 ident: bib0008 article-title: Performance Evaluation of New and Advanced Neural Networks for Short Term Load Forecasting – start-page: 165 year: 2019 end-page: 170 ident: bib0032 article-title: Cancer classification using Gaussian Naive Bayes algorithm publication-title: Proceedings of the IEEE, 2019 International Engineering Conference – start-page: 65 year: 2019 end-page: 100 ident: bib0033 article-title: Learning convolutional neural networks for object detection with very little training data publication-title: Multimodal Scene Understanding – start-page: 523 year: 2017 end-page: 527 ident: bib0025 article-title: A novel application of Naive Bayes classifier in photovoltaic energy prediction publication-title: Proceedings of the 16th IEEE International Conference on Machine Learning and Applications (ICMLA) – volume: 5 start-page: 1 year: 2016 end-page: 9 ident: bib0035 article-title: The distance function effect on k-nearest neighbor classification for medical datasets publication-title: SpringerPlus – volume: 8 start-page: 302 year: 2010 end-page: 305 ident: bib0036 article-title: Survey of nearest neighbor techniques publication-title: Int. J. Comput. Sci. Inf. Secur. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0028 article-title: Random forests publication-title: Mach. Learn. – volume: 39 start-page: 26 year: 2014 end-page: 31 ident: bib0022 article-title: A Proposed ANN and FLSM Hybrid Model for Tidal Current Magnitude and Direction Forecasting publication-title: IEEE Journal of Oceanic Engineering – volume: 1 start-page: 103 year: 2017 end-page: 116 ident: bib0023 article-title: Techno-economic assessment of hybrid energy off-grid system - a case study for Masirah island in Oman publication-title: Int. J. Power Energy Res. – start-page: 41 year: 2010 end-page: 44 ident: bib0021 article-title: Design of artificial neural network models for the prediction of the Hellenic energy consumption publication-title: Proceedings of the 10th Symposium on Neural Network Applications in Electrical Engineering – start-page: 810 year: 2018 end-page: 821 ident: bib0024 article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees publication-title: J. Clean. Prod. – volume: 218 year: 2020 ident: bib0039 article-title: Intelligent optimized deep learning hybrid models of neuro wavelet, Fourier series and recurrent Kalman filter for tidal currents constitutions forecasting publication-title: Ocean Eng. – volume: 10 start-page: 5975 year: 2020 ident: bib0026 article-title: A survey of machine learning models in renewable energy predictions publication-title: Appl. Sci. – volume: 213 year: 2020 ident: bib0001 article-title: A novel deep learning intelligent clustered hybrid models for wind speed and power forecasting publication-title: Energy – volume: 114 start-page: 304 year: 2017 end-page: 313 ident: bib0019 article-title: Solar irradiance forecasting using deep neural networks publication-title: Proc. Comput. Sci. – volume: 118 start-page: 357 year: 2018 end-page: 367 ident: bib0014 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renew. Energy – volume: 182 year: 2020 ident: bib0002 article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN, and KF based on clustering techniques for smart grid publication-title: Elsevier Int. J. Electr. Energy Res. – start-page: 195 year: 2016 end-page: 204 ident: bib0012 article-title: Solar power production forecasting based on recurrent neural network publication-title: Proceedings of the Afro-European Conference for Industrial Advancement, Advances in Intelligent Systems and Computing – volume: 26 start-page: 1355 year: 2015 end-page: 1367 ident: bib0006 article-title: Short-term load forecasting using fuzzy logic and ANFIS publication-title: Neural Comput. Appl. – volume: 48 start-page: 121 year: 2015 end-page: 125 ident: bib0007 article-title: A review of short-term load forecasting using artificial neural network models publication-title: Proc. Comput. Sci. – volume: 5 start-page: 729 year: 2017 end-page: 733 ident: bib0010 article-title: An overview of different types of load forecasting methods and the factors affecting the load forecasting publication-title: Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) – start-page: 810 year: 2018 ident: 10.1016/j.epsr.2021.107436_bib0024 article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.207 – volume: 182 year: 2020 ident: 10.1016/j.epsr.2021.107436_bib0002 article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN, and KF based on clustering techniques for smart grid publication-title: Elsevier Int. J. Electr. Energy Res. – volume: 10 start-page: 5975 issue: 17 year: 2020 ident: 10.1016/j.epsr.2021.107436_bib0026 article-title: A survey of machine learning models in renewable energy predictions publication-title: Appl. Sci. doi: 10.3390/app10175975 – year: 2014 ident: 10.1016/j.epsr.2021.107436_bib0008 – ident: 10.1016/j.epsr.2021.107436_bib0037 – start-page: 165 year: 2019 ident: 10.1016/j.epsr.2021.107436_bib0032 article-title: Cancer classification using Gaussian Naive Bayes algorithm – volume: 11 start-page: 32 issue: 1 year: 2020 ident: 10.1016/j.epsr.2021.107436_bib0018 article-title: Short-term solar irradiance forecasting based on a hybrid deep learning methodology publication-title: Information doi: 10.3390/info11010032 – start-page: 1 year: 2019 ident: 10.1016/j.epsr.2021.107436_bib0005 article-title: SARIMA model forecasting of short-term electrical load data augmented by fast Fourier transform seasonality detection – start-page: 1 year: 2014 ident: 10.1016/j.epsr.2021.107436_bib0013 article-title: Forecasting solar photovoltaic power production at the aggregated system level – start-page: 1 year: 2017 ident: 10.1016/j.epsr.2021.107436_bib0004 article-title: An overview of forecasting techniques for load, wind and solar powers publication-title: IEEE Electr. Power Energy Conf. – volume: 148 start-page: 16 issue: 6 year: 2016 ident: 10.1016/j.epsr.2021.107436_bib0031 article-title: An automated technique using Gaussian naïve Bayes classifier to classify breast cancer publication-title: Int. J. Comput. Appl. – start-page: 65 year: 2019 ident: 10.1016/j.epsr.2021.107436_bib0033 article-title: Learning convolutional neural networks for object detection with very little training data – year: 2015 ident: 10.1016/j.epsr.2021.107436_bib0034 – volume: 44 start-page: 152 issue: 2 year: 2020 ident: 10.1016/j.epsr.2021.107436_bib0017 article-title: Short-term wind speed forecasting based on autoregressive moving average with echo state network compensation publication-title: Wind Eng. doi: 10.1177/0309524X19849867 – volume: 110 start-page: 24 year: 2004 ident: 10.1016/j.epsr.2021.107436_bib0030 – volume: 39 start-page: 26 issue: 1 year: 2014 ident: 10.1016/j.epsr.2021.107436_bib0022 article-title: A Proposed ANN and FLSM Hybrid Model for Tidal Current Magnitude and Direction Forecasting publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/JOE.2013.2241934 – volume: 1 start-page: 103 year: 2017 ident: 10.1016/j.epsr.2021.107436_bib0023 article-title: Techno-economic assessment of hybrid energy off-grid system - a case study for Masirah island in Oman publication-title: Int. J. Power Energy Res. doi: 10.22606/ijper.2017.12003 – volume: 48 start-page: 121 year: 2015 ident: 10.1016/j.epsr.2021.107436_bib0007 article-title: A review of short-term load forecasting using artificial neural network models publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2015.04.160 – start-page: 244 year: 2017 ident: 10.1016/j.epsr.2021.107436_bib0015 article-title: Forecasting PV power from solar irradiance and temperature using neural networks – year: 2021 ident: 10.1016/j.epsr.2021.107436_bib0027 – volume: 8 start-page: 302 issue: 2 year: 2010 ident: 10.1016/j.epsr.2021.107436_bib0036 article-title: Survey of nearest neighbor techniques publication-title: Int. J. Comput. Sci. Inf. Secur. – volume: 27 start-page: 1033 issue: 4 year: 2019 ident: 10.1016/j.epsr.2021.107436_bib0009 article-title: Long-term load forecasting: models based on MARS, ANN and LR methods publication-title: Cent. Eur. J. Oper. Res. doi: 10.1007/s10100-018-0531-1 – volume: 147 start-page: 1554 issue: Part 1 year: 2019 ident: 10.1016/j.epsr.2021.107436_bib0040 article-title: A novel approach for tidal currents harmonic constitutions forecasting hybrid models based on clustering techniques for smart grid publication-title: Renew. Energy – start-page: 195 year: 2016 ident: 10.1016/j.epsr.2021.107436_bib0012 article-title: Solar power production forecasting based on recurrent neural network – volume: 218 year: 2020 ident: 10.1016/j.epsr.2021.107436_bib0039 article-title: Intelligent optimized deep learning hybrid models of neuro wavelet, Fourier series and recurrent Kalman filter for tidal currents constitutions forecasting publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108254 – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: 10.1016/j.epsr.2021.107436_bib0029 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – start-page: 2 year: 2017 ident: 10.1016/j.epsr.2021.107436_bib0038 article-title: Predictive accuracy: a misleading performance measure for highly imbalanced data – volume: 114 start-page: 304 year: 2017 ident: 10.1016/j.epsr.2021.107436_bib0019 article-title: Solar irradiance forecasting using deep neural networks publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2017.09.045 – volume: 213 year: 2020 ident: 10.1016/j.epsr.2021.107436_bib0001 article-title: A novel deep learning intelligent clustered hybrid models for wind speed and power forecasting publication-title: Energy doi: 10.1016/j.energy.2020.118773 – volume: 235 start-page: 786 year: 2019 ident: 10.1016/j.epsr.2021.107436_bib0016 article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.11.012 – start-page: 41 year: 2010 ident: 10.1016/j.epsr.2021.107436_bib0021 article-title: Design of artificial neural network models for the prediction of the Hellenic energy consumption – volume: 5 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.epsr.2021.107436_bib0035 article-title: The distance function effect on k-nearest neighbor classification for medical datasets publication-title: SpringerPlus doi: 10.1186/s40064-016-2941-7 – volume: 41 year: 2020 ident: 10.1016/j.epsr.2021.107436_bib0003 article-title: An intelligent hybrid model of neuro wavelet, time series and recurrent Kalman filter for wind speed forecasting publication-title: Elsevier J. Sustain. Energy Technol. Assess. – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.epsr.2021.107436_bib0028 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 26 start-page: 1355 issue: 6 year: 2015 ident: 10.1016/j.epsr.2021.107436_bib0006 article-title: Short-term load forecasting using fuzzy logic and ANFIS publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1809-4 – volume: 69 start-page: 177 year: 2017 ident: 10.1016/j.epsr.2021.107436_bib0011 article-title: Short-term electric energy production forecasting at wind power plants in Pareto-optimality context publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.026 – volume: 5 start-page: 729 issue: IV year: 2017 ident: 10.1016/j.epsr.2021.107436_bib0010 article-title: An overview of different types of load forecasting methods and the factors affecting the load forecasting publication-title: Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) doi: 10.22214/ijraset.2017.4132 – volume: 9 start-page: 1724 issue: 12 year: 2008 ident: 10.1016/j.epsr.2021.107436_bib0020 article-title: Adaptive load forecasting of the Hellenic electric grid publication-title: J. Zhejiang Univ. Sci. A doi: 10.1631/jzus.A0820042 – start-page: 523 year: 2017 ident: 10.1016/j.epsr.2021.107436_bib0025 article-title: A novel application of Naive Bayes classifier in photovoltaic energy prediction – volume: 118 start-page: 357 year: 2018 ident: 10.1016/j.epsr.2021.107436_bib0014 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renew. Energy doi: 10.1016/j.renene.2017.11.011 |
| SSID | ssj0006975 |
| Score | 2.5153992 |
| Snippet | •Solar and wind along with gasoline and diesel sources are combined for HES.•Different algorithms are applied to forecast the optimal energy source... Hybrid energy systems (HES) that contain renewable energy sources, such as wind and solar energy help to minimize CO2 emissions. Therefore, studying these... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107436 |
| SubjectTerms | Algorithms Confusion matrix Decision trees Energy management Hybrid energy systems Hybrid systems K-nearest neighbors algorithm Machine learning Renewable energy sources Scheduling and managing Solar energy Studies |
| Title | Energy management of hybrid energy system sources based on machine learning classification algorithms |
| URI | https://dx.doi.org/10.1016/j.epsr.2021.107436 https://www.proquest.com/docview/2581072300 |
| Volume | 199 |
| WOSCitedRecordID | wos000685350200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE9tMJAPiEsUFLtNHB8r1KmgqnDopN4sJ7FHpy4tTZm2P2L_M89fSZlGBQcuUWU3afXeL-_L7wOh9xpcAFIWWUx0weIBZSQuWCZjWVFOFQN3rCrtsAk2nebzOf_W692GWpirJavr_Pqar_8rq2ENmG1KZ_-B3e1DYQE-A9PhCmyH618xfuSq-S7bvBZrD96YyqxIuT3XvjlygfsmMpqsMqcGlzazUoVREudRaWxrk0zkYCKX56vNYvvddzgPAX07SWdRRmszcc0_3JxG7ATKLEubQtogzhg0cKsNhm7U9VjCYlcpMVmY3so7YPIxVx-foKTNdPNBs1A4E2RVl61ki7bAiWWM-27YTgbnrA8c9ZHJIKTdGCUvZsm9wt_FIS5Ajzem0yslH022af-eTtvTr-L0bDIRs9F89mH9IzZDyMxhvZ_I8gAdUpZyEJuHw8-j-ZdWtWfcdm5u_7WvwnIJg3d_9k-Wzh2dbw2Z2VP0xHsgeOiQ8wz1VP0cPd7pS_kCKYch3GEIrzR2GMIOQ9ixGXsMYYshvKqxxxAOGMK_Ywh3GHqJzk5Hs0_j2M_jiEvKyTaWui9JZSYwgJWvWZrqiidZUmV6oNOKaUYKMOdVRYqB4iRXTOYJl0pqKsGIB7vwFTqoV7U6QnhQspKDMpEZuB-6AlImKS3AcDId-TKaHyMSaCdK36zezExZipCVeCEMvYWht3D0PkZRe8_atWrZ--00sER4Y9MZkQLgtPe-k8A_4d_6RtA0h13w5pPX-7ffoEfdO3KCDrabn-otelhebRfN5p2H2y-cuqtn |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+management+of+hybrid+energy+system+sources+based+on+machine+learning+classification+algorithms&rft.jtitle=Electric+power+systems+research&rft.au=Musbah%2C+Hmeda&rft.au=Aly%2C+Hamed+H&rft.au=Little%2C+Timothy+A&rft.date=2021-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=199&rft.spage=1&rft_id=info:doi/10.1016%2Fj.epsr.2021.107436&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |