Energy management of hybrid energy system sources based on machine learning classification algorithms

•Solar and wind along with gasoline and diesel sources are combined for HES.•Different algorithms are applied to forecast the optimal energy source supplier.•Optimal SAM is achieved based on supervised algorithms.•Algorithms are ranked based on their performance. Hybrid energy systems (HES) that con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research Jg. 199; S. 107436
Hauptverfasser: Musbah, Hmeda, Aly, Hamed H., Little, Timothy A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.10.2021
Elsevier Science Ltd
Schlagworte:
ISSN:0378-7796, 1873-2046
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Solar and wind along with gasoline and diesel sources are combined for HES.•Different algorithms are applied to forecast the optimal energy source supplier.•Optimal SAM is achieved based on supervised algorithms.•Algorithms are ranked based on their performance. Hybrid energy systems (HES) that contain renewable energy sources, such as wind and solar energy help to minimize CO2 emissions. Therefore, studying these systems to improve their performance has become one of the critical needs these days due to the environmental crisis. Within HES, energy management (EM) of HES is an essential topic that has been covered in detail by numerous studies, as errors in EM can lead to HES blackouts. Recent research has experimented with energy management strategy (EMS) to achieve optimal EM. This work aims to generate a robust forecasting model for one hour ahead of EM. The present research work has two main objectives. The first objective is to determine which energy source should supply the demand side, using different machine-learning algorithms such as Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes (Gaussian NB) and K-Nearest Neighbors (KNN). The second objective is to compare the results of these algorithms to choose the algorithm with the best performance and to rank them based on performance as well as accuracy. The work is validated using different algorithms. The results show that DT algorithm has achieved the best performance compared to the RF and Gaussian NB algorithms. KNN algorithm gives the lowest accuracy especially over class 3. The results proof that RF, DT, and Gaussian NB algorithms are reliable.
AbstractList Hybrid energy systems (HES) that contain renewable energy sources, such as wind and solar energy help to minimize CO2 emissions. Therefore, studying these systems to improve their performance has become one of the critical needs these days due to the environmental crisis. Within HES, energy management (EM) of HES is an essential topic that has been covered in detail by numerous studies, as errors in EM can lead to HES blackouts. Recent research has experimented with energy management strategy (EMS) to achieve optimal EM. This work aims to generate a robust forecasting model for one hour ahead of EM. The present research work has two main objectives. The first objective is to determine which energy source should supply the demand side, using different machine-learning algorithms such as Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes (Gaussian NB) and K-Nearest Neighbors (KNN). The second objective is to compare the results of these algorithms to choose the algorithm with the best performance and to rank them based on performance as well as accuracy. The work is validated using different algorithms. The results show that DT algorithm has achieved the best performance compared to the RF and Gaussian NB algorithms. KNN algorithm gives the lowest accuracy especially over class 3. The results proof that RF, DT, and Gaussian NB algorithms are reliable.
•Solar and wind along with gasoline and diesel sources are combined for HES.•Different algorithms are applied to forecast the optimal energy source supplier.•Optimal SAM is achieved based on supervised algorithms.•Algorithms are ranked based on their performance. Hybrid energy systems (HES) that contain renewable energy sources, such as wind and solar energy help to minimize CO2 emissions. Therefore, studying these systems to improve their performance has become one of the critical needs these days due to the environmental crisis. Within HES, energy management (EM) of HES is an essential topic that has been covered in detail by numerous studies, as errors in EM can lead to HES blackouts. Recent research has experimented with energy management strategy (EMS) to achieve optimal EM. This work aims to generate a robust forecasting model for one hour ahead of EM. The present research work has two main objectives. The first objective is to determine which energy source should supply the demand side, using different machine-learning algorithms such as Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes (Gaussian NB) and K-Nearest Neighbors (KNN). The second objective is to compare the results of these algorithms to choose the algorithm with the best performance and to rank them based on performance as well as accuracy. The work is validated using different algorithms. The results show that DT algorithm has achieved the best performance compared to the RF and Gaussian NB algorithms. KNN algorithm gives the lowest accuracy especially over class 3. The results proof that RF, DT, and Gaussian NB algorithms are reliable.
ArticleNumber 107436
Author Musbah, Hmeda
Little, Timothy A.
Aly, Hamed H.
Author_xml – sequence: 1
  givenname: Hmeda
  orcidid: 0000-0002-2159-5029
  surname: Musbah
  fullname: Musbah, Hmeda
  email: Hm392855@dal.ca
– sequence: 2
  givenname: Hamed H.
  orcidid: 0000-0003-2676-081X
  surname: Aly
  fullname: Aly, Hamed H.
  email: hamed.aly@dal.ca
– sequence: 3
  givenname: Timothy A.
  surname: Little
  fullname: Little, Timothy A.
  email: Timothy.Little@Dal.Ca
BookMark eNp9kE1rGzEQQEVxIE6aP5CToOd1R9rVahd6KcZNA4Zc0rOQpZEts6t1Jbngf1-521MOPg3MzJuP90AWYQpIyDODFQPWfj2u8JTiigNnJSGbuv1ElqyTdcWhaRdkCbXsKin79p48pHQEgLaXYklwEzDuL3TUQe9xxJDp5OjhsoveUpxr6ZIyjjRN52gw0Z1OaOkUCmMOPiAdUMfgw56aQafknTc6-1LXw36KPh_G9JncOT0kfPofH8mvH5v39c9q-_byuv6-rQzvWa60qzWzAF3TgHBSCGd7aMG2rnHCSifZrhYcLds12LMOpe6g16gd1yD6TtSP5Ms89xSn32dMWR3L0aGsVFx0RQyvAUoXn7tMnFKK6NQp-lHHi2KgrjrVUV11qqtONessUPcBMj7_-zNH7Yfb6LcZxfL6H49RJeMxGLQ-osnKTv4W_hfHSJRO
CitedBy_id crossref_primary_10_1016_j_egyr_2023_04_006
crossref_primary_10_1016_j_mtcomm_2024_109150
crossref_primary_10_1080_15325008_2024_2338557
crossref_primary_10_1016_j_conbuildmat_2023_133148
crossref_primary_10_1016_j_apenergy_2025_125355
crossref_primary_10_3390_en17112605
crossref_primary_10_1007_s13762_024_06017_5
crossref_primary_10_1007_s00521_024_10805_y
crossref_primary_10_1007_s10845_024_02460_w
crossref_primary_10_1016_j_enbuild_2025_115478
crossref_primary_10_1016_j_bspc_2023_104700
crossref_primary_10_1016_j_est_2025_115719
crossref_primary_10_1038_s41598_025_12888_6
crossref_primary_10_1007_s10668_024_04988_6
crossref_primary_10_3390_w17070939
crossref_primary_10_1016_j_egyr_2022_11_195
crossref_primary_10_3390_jlpea14040059
crossref_primary_10_1080_10407790_2023_2280208
crossref_primary_10_3390_su14084832
crossref_primary_10_1049_gtd2_13183
crossref_primary_10_1155_2022_2062944
crossref_primary_10_1016_j_nexres_2024_100119
crossref_primary_10_3390_asi5010018
crossref_primary_10_61453_joit_v2023no33
crossref_primary_10_1016_j_epsr_2022_107917
crossref_primary_10_3390_en17236027
crossref_primary_10_1063_5_0237246
crossref_primary_10_1155_2024_1050785
crossref_primary_10_1007_s11269_022_03277_z
crossref_primary_10_3390_buildings14072169
crossref_primary_10_1016_j_mtcomm_2024_110511
crossref_primary_10_1007_s00521_022_07856_4
crossref_primary_10_3390_app142311112
crossref_primary_10_1007_s13198_024_02668_2
crossref_primary_10_1016_j_artmed_2023_102492
crossref_primary_10_1155_2022_7797488
Cites_doi 10.1016/j.jclepro.2018.08.207
10.3390/app10175975
10.3390/info11010032
10.1177/0309524X19849867
10.1109/JOE.2013.2241934
10.22606/ijper.2017.12003
10.1016/j.procs.2015.04.160
10.1007/s10100-018-0531-1
10.1016/j.oceaneng.2020.108254
10.1016/j.procs.2017.09.045
10.1016/j.energy.2020.118773
10.1016/j.apenergy.2018.11.012
10.1186/s40064-016-2941-7
10.1023/A:1010933404324
10.1007/s00521-014-1809-4
10.1016/j.rser.2016.11.026
10.22214/ijraset.2017.4132
10.1631/jzus.A0820042
10.1016/j.renene.2017.11.011
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Oct 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Oct 2021
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2021.107436
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2021_107436
S037877962100417X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-af3a1d0084405f755fd9060d6f4f5d7f71b352ed1b4e918e7a809aeaf2a059853
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685350200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sun Nov 09 08:48:30 EST 2025
Tue Nov 18 22:35:04 EST 2025
Sat Nov 29 07:19:52 EST 2025
Fri Feb 23 02:42:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Confusion matrix
Scheduling and managing
Machine learning
Hybrid energy systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-af3a1d0084405f755fd9060d6f4f5d7f71b352ed1b4e918e7a809aeaf2a059853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2159-5029
0000-0003-2676-081X
PQID 2581072300
PQPubID 2047565
ParticipantIDs proquest_journals_2581072300
crossref_primary_10_1016_j_epsr_2021_107436
crossref_citationtrail_10_1016_j_epsr_2021_107436
elsevier_sciencedirect_doi_10_1016_j_epsr_2021_107436
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Karampelas, Vita, Pavlatos, Mladenov, Ekonomou (bib0021) 2010
Aly (bib0040) 2019; 147
Hu, Huang, Ke, Tsai (bib0035) 2016; 5
Tian, Wang, Ren (bib0017) 2020; 44
Lai, Chang, Chen, Pai (bib0026) 2020; 10
Aly (bib0003) 2020; 41
Eseye, Zhang, Zheng (bib0014) 2018; 118
Al Ghaithi, Fotis, Vita (bib0023) 2017; 1
Gupta (bib0027) 2021
Mehmood (bib0008) 2014
Nalcaci, Özmen, Weber (bib0009) 2019; 27
Fernández-Delgado, Cernadas, Barro, Amorim (bib0029) 2014; 15
Reinders, Ackermann, Yang, Rosenhahn (bib0033) 2019
Kamel, Abdulah, Al-Tuwaijari (bib0032) 2019
Çevik, Çunkaş (bib0006) 2015; 26
Aly (bib0002) 2020; 182
Pappas, Ekonomou, Moussas, Karampelas, Katsikas (bib0020) 2008; 9
Aburiyana, El-Hawary (bib0004) 2017
Yan, Shen, Wang, Zhou, Xu, Mo (bib0018) 2020; 11
Bayindir, Yesilbudak, Colak, Genc (bib0025) 2017
Breiman (bib0028) 2001; 45
Jiang, Yang, Heng (bib0016) 2019; 235
Ramaswamy, Sadhu (bib0015) 2017
Kotu, Deshpande (bib0034) 2015
Zhang, Beaudin, Zareipour, Wood (bib0013) 2014
Bhatia, Vandana (bib0036) 2010; 8
Akosa (bib0038) 2017
Wasilewski, Baczynski (bib0011) 2017; 69
Aly (bib0039) 2020; 218
E. Frank, A. Mark, H. Ian, The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, (2016).
Gupta, Pal (bib0010) 2017; 5
Gayathri, Sumathi (bib0031) 2016; 148
Baliyan, Gaurav, Mishra (bib0007) 2015; 48
Misak, Burianek, Stuchly (bib0012) 2016
Aly (bib0001) 2020; 213
Chen, Liaw, Breiman (bib0030) 2004; 110
Alzahrani, Shamsi, Dagli, Ferdowsi (bib0019) 2017; 114
Aly, El-Hawary (bib0022) 2014; 39
Ahmad, Reynolds, Rezgui (bib0024) 2018
Musbah, El-Hawary (bib0005) 2019
Zhang (10.1016/j.epsr.2021.107436_bib0013) 2014
Ramaswamy (10.1016/j.epsr.2021.107436_bib0015) 2017
Al Ghaithi (10.1016/j.epsr.2021.107436_bib0023) 2017; 1
Alzahrani (10.1016/j.epsr.2021.107436_bib0019) 2017; 114
Bayindir (10.1016/j.epsr.2021.107436_bib0025) 2017
Chen (10.1016/j.epsr.2021.107436_bib0030) 2004; 110
Hu (10.1016/j.epsr.2021.107436_bib0035) 2016; 5
Wasilewski (10.1016/j.epsr.2021.107436_bib0011) 2017; 69
Reinders (10.1016/j.epsr.2021.107436_bib0033) 2019
10.1016/j.epsr.2021.107436_bib0037
Gupta (10.1016/j.epsr.2021.107436_bib0010) 2017; 5
Baliyan (10.1016/j.epsr.2021.107436_bib0007) 2015; 48
Gayathri (10.1016/j.epsr.2021.107436_bib0031) 2016; 148
Aly (10.1016/j.epsr.2021.107436_bib0039) 2020; 218
Breiman (10.1016/j.epsr.2021.107436_bib0028) 2001; 45
Mehmood (10.1016/j.epsr.2021.107436_bib0008) 2014
Fernández-Delgado (10.1016/j.epsr.2021.107436_bib0029) 2014; 15
Nalcaci (10.1016/j.epsr.2021.107436_bib0009) 2019; 27
Karampelas (10.1016/j.epsr.2021.107436_bib0021) 2010
Aly (10.1016/j.epsr.2021.107436_bib0003) 2020; 41
Çevik (10.1016/j.epsr.2021.107436_bib0006) 2015; 26
Ahmad (10.1016/j.epsr.2021.107436_bib0024) 2018
Kotu (10.1016/j.epsr.2021.107436_bib0034) 2015
Aly (10.1016/j.epsr.2021.107436_bib0001) 2020; 213
Gupta (10.1016/j.epsr.2021.107436_bib0027) 2021
Misak (10.1016/j.epsr.2021.107436_bib0012) 2016
Musbah (10.1016/j.epsr.2021.107436_bib0005) 2019
Aly (10.1016/j.epsr.2021.107436_bib0022) 2014; 39
Lai (10.1016/j.epsr.2021.107436_bib0026) 2020; 10
Kamel (10.1016/j.epsr.2021.107436_bib0032) 2019
Aly (10.1016/j.epsr.2021.107436_bib0040) 2019; 147
Akosa (10.1016/j.epsr.2021.107436_bib0038) 2017
Eseye (10.1016/j.epsr.2021.107436_bib0014) 2018; 118
Tian (10.1016/j.epsr.2021.107436_bib0017) 2020; 44
Bhatia (10.1016/j.epsr.2021.107436_bib0036) 2010; 8
Aly (10.1016/j.epsr.2021.107436_bib0002) 2020; 182
Aburiyana (10.1016/j.epsr.2021.107436_bib0004) 2017
Yan (10.1016/j.epsr.2021.107436_bib0018) 2020; 11
Pappas (10.1016/j.epsr.2021.107436_bib0020) 2008; 9
Jiang (10.1016/j.epsr.2021.107436_bib0016) 2019; 235
References_xml – volume: 110
  start-page: 24
  year: 2004
  ident: bib0030
  publication-title: Using Random Forest to Learn Imbalanced Data
– volume: 69
  start-page: 177
  year: 2017
  end-page: 187
  ident: bib0011
  article-title: Short-term electric energy production forecasting at wind power plants in Pareto-optimality context
  publication-title: Renew. Sustain. Energy Rev.
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: bib0029
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1724
  year: 2008
  end-page: 1730
  ident: bib0020
  article-title: Adaptive load forecasting of the Hellenic electric grid
  publication-title: J. Zhejiang Univ. Sci. A
– start-page: 1
  year: 2017
  end-page: 7
  ident: bib0004
  article-title: An overview of forecasting techniques for load, wind and solar powers
  publication-title: IEEE Electr. Power Energy Conf.
– volume: 44
  start-page: 152
  year: 2020
  end-page: 167
  ident: bib0017
  article-title: Short-term wind speed forecasting based on autoregressive moving average with echo state network compensation
  publication-title: Wind Eng.
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib0013
  article-title: Forecasting solar photovoltaic power production at the aggregated system level
  publication-title: Proceedings of the IEEE North American Power Symposium
– volume: 11
  start-page: 32
  year: 2020
  ident: bib0018
  article-title: Short-term solar irradiance forecasting based on a hybrid deep learning methodology
  publication-title: Information
– start-page: 1
  year: 2019
  end-page: 4
  ident: bib0005
  article-title: SARIMA model forecasting of short-term electrical load data augmented by fast Fourier transform seasonality detection
  publication-title: Proceedings of the IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)
– volume: 27
  start-page: 1033
  year: 2019
  end-page: 1049
  ident: bib0009
  article-title: Long-term load forecasting: models based on MARS, ANN and LR methods
  publication-title: Cent. Eur. J. Oper. Res.
– volume: 235
  start-page: 786
  year: 2019
  end-page: 801
  ident: bib0016
  article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting
  publication-title: Appl. Energy
– year: 2015
  ident: bib0034
  article-title: Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner
– start-page: 244
  year: 2017
  end-page: 248
  ident: bib0015
  article-title: Forecasting PV power from solar irradiance and temperature using neural networks
  publication-title: Proceedings of the IEEE, International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions)
– volume: 148
  start-page: 16
  year: 2016
  end-page: 21
  ident: bib0031
  article-title: An automated technique using Gaussian naïve Bayes classifier to classify breast cancer
  publication-title: Int. J. Comput. Appl.
– reference: E. Frank, A. Mark, H. Ian, The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, (2016).
– start-page: 2
  year: 2017
  end-page: 5
  ident: bib0038
  article-title: Predictive accuracy: a misleading performance measure for highly imbalanced data
  publication-title: Proceedings of the SAS Global Forum
– volume: 41
  year: 2020
  ident: bib0003
  article-title: An intelligent hybrid model of neuro wavelet, time series and recurrent Kalman filter for wind speed forecasting
  publication-title: Elsevier J. Sustain. Energy Technol. Assess.
– year: 2021
  ident: bib0027
  article-title: Introduction to Machine Learning in the Cloud with Python: Concepts and Practices
– volume: 147
  start-page: 1554
  year: 2019
  end-page: 1564
  ident: bib0040
  article-title: A novel approach for tidal currents harmonic constitutions forecasting hybrid models based on clustering techniques for smart grid
  publication-title: Renew. Energy
– year: 2014
  ident: bib0008
  article-title: Performance Evaluation of New and Advanced Neural Networks for Short Term Load Forecasting
– start-page: 165
  year: 2019
  end-page: 170
  ident: bib0032
  article-title: Cancer classification using Gaussian Naive Bayes algorithm
  publication-title: Proceedings of the IEEE, 2019 International Engineering Conference
– start-page: 65
  year: 2019
  end-page: 100
  ident: bib0033
  article-title: Learning convolutional neural networks for object detection with very little training data
  publication-title: Multimodal Scene Understanding
– start-page: 523
  year: 2017
  end-page: 527
  ident: bib0025
  article-title: A novel application of Naive Bayes classifier in photovoltaic energy prediction
  publication-title: Proceedings of the 16th IEEE International Conference on Machine Learning and Applications (ICMLA)
– volume: 5
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0035
  article-title: The distance function effect on k-nearest neighbor classification for medical datasets
  publication-title: SpringerPlus
– volume: 8
  start-page: 302
  year: 2010
  end-page: 305
  ident: bib0036
  article-title: Survey of nearest neighbor techniques
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0028
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 39
  start-page: 26
  year: 2014
  end-page: 31
  ident: bib0022
  article-title: A Proposed ANN and FLSM Hybrid Model for Tidal Current Magnitude and Direction Forecasting
  publication-title: IEEE Journal of Oceanic Engineering
– volume: 1
  start-page: 103
  year: 2017
  end-page: 116
  ident: bib0023
  article-title: Techno-economic assessment of hybrid energy off-grid system - a case study for Masirah island in Oman
  publication-title: Int. J. Power Energy Res.
– start-page: 41
  year: 2010
  end-page: 44
  ident: bib0021
  article-title: Design of artificial neural network models for the prediction of the Hellenic energy consumption
  publication-title: Proceedings of the 10th Symposium on Neural Network Applications in Electrical Engineering
– start-page: 810
  year: 2018
  end-page: 821
  ident: bib0024
  article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J. Clean. Prod.
– volume: 218
  year: 2020
  ident: bib0039
  article-title: Intelligent optimized deep learning hybrid models of neuro wavelet, Fourier series and recurrent Kalman filter for tidal currents constitutions forecasting
  publication-title: Ocean Eng.
– volume: 10
  start-page: 5975
  year: 2020
  ident: bib0026
  article-title: A survey of machine learning models in renewable energy predictions
  publication-title: Appl. Sci.
– volume: 213
  year: 2020
  ident: bib0001
  article-title: A novel deep learning intelligent clustered hybrid models for wind speed and power forecasting
  publication-title: Energy
– volume: 114
  start-page: 304
  year: 2017
  end-page: 313
  ident: bib0019
  article-title: Solar irradiance forecasting using deep neural networks
  publication-title: Proc. Comput. Sci.
– volume: 118
  start-page: 357
  year: 2018
  end-page: 367
  ident: bib0014
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew. Energy
– volume: 182
  year: 2020
  ident: bib0002
  article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN, and KF based on clustering techniques for smart grid
  publication-title: Elsevier Int. J. Electr. Energy Res.
– start-page: 195
  year: 2016
  end-page: 204
  ident: bib0012
  article-title: Solar power production forecasting based on recurrent neural network
  publication-title: Proceedings of the Afro-European Conference for Industrial Advancement, Advances in Intelligent Systems and Computing
– volume: 26
  start-page: 1355
  year: 2015
  end-page: 1367
  ident: bib0006
  article-title: Short-term load forecasting using fuzzy logic and ANFIS
  publication-title: Neural Comput. Appl.
– volume: 48
  start-page: 121
  year: 2015
  end-page: 125
  ident: bib0007
  article-title: A review of short-term load forecasting using artificial neural network models
  publication-title: Proc. Comput. Sci.
– volume: 5
  start-page: 729
  year: 2017
  end-page: 733
  ident: bib0010
  article-title: An overview of different types of load forecasting methods and the factors affecting the load forecasting
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET)
– start-page: 810
  year: 2018
  ident: 10.1016/j.epsr.2021.107436_bib0024
  article-title: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.207
– volume: 182
  year: 2020
  ident: 10.1016/j.epsr.2021.107436_bib0002
  article-title: A proposed intelligent short-term load forecasting hybrid models of ANN, WNN, and KF based on clustering techniques for smart grid
  publication-title: Elsevier Int. J. Electr. Energy Res.
– volume: 10
  start-page: 5975
  issue: 17
  year: 2020
  ident: 10.1016/j.epsr.2021.107436_bib0026
  article-title: A survey of machine learning models in renewable energy predictions
  publication-title: Appl. Sci.
  doi: 10.3390/app10175975
– year: 2014
  ident: 10.1016/j.epsr.2021.107436_bib0008
– ident: 10.1016/j.epsr.2021.107436_bib0037
– start-page: 165
  year: 2019
  ident: 10.1016/j.epsr.2021.107436_bib0032
  article-title: Cancer classification using Gaussian Naive Bayes algorithm
– volume: 11
  start-page: 32
  issue: 1
  year: 2020
  ident: 10.1016/j.epsr.2021.107436_bib0018
  article-title: Short-term solar irradiance forecasting based on a hybrid deep learning methodology
  publication-title: Information
  doi: 10.3390/info11010032
– start-page: 1
  year: 2019
  ident: 10.1016/j.epsr.2021.107436_bib0005
  article-title: SARIMA model forecasting of short-term electrical load data augmented by fast Fourier transform seasonality detection
– start-page: 1
  year: 2014
  ident: 10.1016/j.epsr.2021.107436_bib0013
  article-title: Forecasting solar photovoltaic power production at the aggregated system level
– start-page: 1
  year: 2017
  ident: 10.1016/j.epsr.2021.107436_bib0004
  article-title: An overview of forecasting techniques for load, wind and solar powers
  publication-title: IEEE Electr. Power Energy Conf.
– volume: 148
  start-page: 16
  issue: 6
  year: 2016
  ident: 10.1016/j.epsr.2021.107436_bib0031
  article-title: An automated technique using Gaussian naïve Bayes classifier to classify breast cancer
  publication-title: Int. J. Comput. Appl.
– start-page: 65
  year: 2019
  ident: 10.1016/j.epsr.2021.107436_bib0033
  article-title: Learning convolutional neural networks for object detection with very little training data
– year: 2015
  ident: 10.1016/j.epsr.2021.107436_bib0034
– volume: 44
  start-page: 152
  issue: 2
  year: 2020
  ident: 10.1016/j.epsr.2021.107436_bib0017
  article-title: Short-term wind speed forecasting based on autoregressive moving average with echo state network compensation
  publication-title: Wind Eng.
  doi: 10.1177/0309524X19849867
– volume: 110
  start-page: 24
  year: 2004
  ident: 10.1016/j.epsr.2021.107436_bib0030
– volume: 39
  start-page: 26
  issue: 1
  year: 2014
  ident: 10.1016/j.epsr.2021.107436_bib0022
  article-title: A Proposed ANN and FLSM Hybrid Model for Tidal Current Magnitude and Direction Forecasting
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/JOE.2013.2241934
– volume: 1
  start-page: 103
  year: 2017
  ident: 10.1016/j.epsr.2021.107436_bib0023
  article-title: Techno-economic assessment of hybrid energy off-grid system - a case study for Masirah island in Oman
  publication-title: Int. J. Power Energy Res.
  doi: 10.22606/ijper.2017.12003
– volume: 48
  start-page: 121
  year: 2015
  ident: 10.1016/j.epsr.2021.107436_bib0007
  article-title: A review of short-term load forecasting using artificial neural network models
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2015.04.160
– start-page: 244
  year: 2017
  ident: 10.1016/j.epsr.2021.107436_bib0015
  article-title: Forecasting PV power from solar irradiance and temperature using neural networks
– year: 2021
  ident: 10.1016/j.epsr.2021.107436_bib0027
– volume: 8
  start-page: 302
  issue: 2
  year: 2010
  ident: 10.1016/j.epsr.2021.107436_bib0036
  article-title: Survey of nearest neighbor techniques
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 27
  start-page: 1033
  issue: 4
  year: 2019
  ident: 10.1016/j.epsr.2021.107436_bib0009
  article-title: Long-term load forecasting: models based on MARS, ANN and LR methods
  publication-title: Cent. Eur. J. Oper. Res.
  doi: 10.1007/s10100-018-0531-1
– volume: 147
  start-page: 1554
  issue: Part 1
  year: 2019
  ident: 10.1016/j.epsr.2021.107436_bib0040
  article-title: A novel approach for tidal currents harmonic constitutions forecasting hybrid models based on clustering techniques for smart grid
  publication-title: Renew. Energy
– start-page: 195
  year: 2016
  ident: 10.1016/j.epsr.2021.107436_bib0012
  article-title: Solar power production forecasting based on recurrent neural network
– volume: 218
  year: 2020
  ident: 10.1016/j.epsr.2021.107436_bib0039
  article-title: Intelligent optimized deep learning hybrid models of neuro wavelet, Fourier series and recurrent Kalman filter for tidal currents constitutions forecasting
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108254
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 10.1016/j.epsr.2021.107436_bib0029
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– start-page: 2
  year: 2017
  ident: 10.1016/j.epsr.2021.107436_bib0038
  article-title: Predictive accuracy: a misleading performance measure for highly imbalanced data
– volume: 114
  start-page: 304
  year: 2017
  ident: 10.1016/j.epsr.2021.107436_bib0019
  article-title: Solar irradiance forecasting using deep neural networks
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2017.09.045
– volume: 213
  year: 2020
  ident: 10.1016/j.epsr.2021.107436_bib0001
  article-title: A novel deep learning intelligent clustered hybrid models for wind speed and power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118773
– volume: 235
  start-page: 786
  year: 2019
  ident: 10.1016/j.epsr.2021.107436_bib0016
  article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.11.012
– start-page: 41
  year: 2010
  ident: 10.1016/j.epsr.2021.107436_bib0021
  article-title: Design of artificial neural network models for the prediction of the Hellenic energy consumption
– volume: 5
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.epsr.2021.107436_bib0035
  article-title: The distance function effect on k-nearest neighbor classification for medical datasets
  publication-title: SpringerPlus
  doi: 10.1186/s40064-016-2941-7
– volume: 41
  year: 2020
  ident: 10.1016/j.epsr.2021.107436_bib0003
  article-title: An intelligent hybrid model of neuro wavelet, time series and recurrent Kalman filter for wind speed forecasting
  publication-title: Elsevier J. Sustain. Energy Technol. Assess.
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.epsr.2021.107436_bib0028
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 26
  start-page: 1355
  issue: 6
  year: 2015
  ident: 10.1016/j.epsr.2021.107436_bib0006
  article-title: Short-term load forecasting using fuzzy logic and ANFIS
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1809-4
– volume: 69
  start-page: 177
  year: 2017
  ident: 10.1016/j.epsr.2021.107436_bib0011
  article-title: Short-term electric energy production forecasting at wind power plants in Pareto-optimality context
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.026
– volume: 5
  start-page: 729
  issue: IV
  year: 2017
  ident: 10.1016/j.epsr.2021.107436_bib0010
  article-title: An overview of different types of load forecasting methods and the factors affecting the load forecasting
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET)
  doi: 10.22214/ijraset.2017.4132
– volume: 9
  start-page: 1724
  issue: 12
  year: 2008
  ident: 10.1016/j.epsr.2021.107436_bib0020
  article-title: Adaptive load forecasting of the Hellenic electric grid
  publication-title: J. Zhejiang Univ. Sci. A
  doi: 10.1631/jzus.A0820042
– start-page: 523
  year: 2017
  ident: 10.1016/j.epsr.2021.107436_bib0025
  article-title: A novel application of Naive Bayes classifier in photovoltaic energy prediction
– volume: 118
  start-page: 357
  year: 2018
  ident: 10.1016/j.epsr.2021.107436_bib0014
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.11.011
SSID ssj0006975
Score 2.5153992
Snippet •Solar and wind along with gasoline and diesel sources are combined for HES.•Different algorithms are applied to forecast the optimal energy source...
Hybrid energy systems (HES) that contain renewable energy sources, such as wind and solar energy help to minimize CO2 emissions. Therefore, studying these...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107436
SubjectTerms Algorithms
Confusion matrix
Decision trees
Energy management
Hybrid energy systems
Hybrid systems
K-nearest neighbors algorithm
Machine learning
Renewable energy sources
Scheduling and managing
Solar energy
Studies
Title Energy management of hybrid energy system sources based on machine learning classification algorithms
URI https://dx.doi.org/10.1016/j.epsr.2021.107436
https://www.proquest.com/docview/2581072300
Volume 199
WOSCitedRecordID wos000685350200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE9tMJAPiEsUFLtNHB8r1KmgqnDopN4sJ7FHpy4tTZm2P2L_M89fSZlGBQcuUWU3afXeL-_L7wOh9xpcAFIWWUx0weIBZSQuWCZjWVFOFQN3rCrtsAk2nebzOf_W692GWpirJavr_Pqar_8rq2ENmG1KZ_-B3e1DYQE-A9PhCmyH618xfuSq-S7bvBZrD96YyqxIuT3XvjlygfsmMpqsMqcGlzazUoVREudRaWxrk0zkYCKX56vNYvvddzgPAX07SWdRRmszcc0_3JxG7ATKLEubQtogzhg0cKsNhm7U9VjCYlcpMVmY3so7YPIxVx-foKTNdPNBs1A4E2RVl61ki7bAiWWM-27YTgbnrA8c9ZHJIKTdGCUvZsm9wt_FIS5Ajzem0yslH022af-eTtvTr-L0bDIRs9F89mH9IzZDyMxhvZ_I8gAdUpZyEJuHw8-j-ZdWtWfcdm5u_7WvwnIJg3d_9k-Wzh2dbw2Z2VP0xHsgeOiQ8wz1VP0cPd7pS_kCKYch3GEIrzR2GMIOQ9ixGXsMYYshvKqxxxAOGMK_Ywh3GHqJzk5Hs0_j2M_jiEvKyTaWui9JZSYwgJWvWZrqiidZUmV6oNOKaUYKMOdVRYqB4iRXTOYJl0pqKsGIB7vwFTqoV7U6QnhQspKDMpEZuB-6AlImKS3AcDId-TKaHyMSaCdK36zezExZipCVeCEMvYWht3D0PkZRe8_atWrZ--00sER4Y9MZkQLgtPe-k8A_4d_6RtA0h13w5pPX-7ffoEfdO3KCDrabn-otelhebRfN5p2H2y-cuqtn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+management+of+hybrid+energy+system+sources+based+on+machine+learning+classification+algorithms&rft.jtitle=Electric+power+systems+research&rft.au=Musbah%2C+Hmeda&rft.au=Aly%2C+Hamed+H&rft.au=Little%2C+Timothy+A&rft.date=2021-10-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=199&rft.spage=1&rft_id=info:doi/10.1016%2Fj.epsr.2021.107436&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon