Optimal Crossover Designs for Generalized Linear Models

We identify locally D -optimal crossover designs for generalized linear models. We use generalized estimating equations to estimate the model parameters along with their variances. To capture the dependency among the observations coming from the same subject, we propose six different correlation str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical theory and practice Jg. 14; H. 2
Hauptverfasser: Jankar, Jeevan, Mandal, Abhyuday, Yang, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.06.2020
Schlagworte:
ISSN:1559-8608, 1559-8616
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We identify locally D -optimal crossover designs for generalized linear models. We use generalized estimating equations to estimate the model parameters along with their variances. To capture the dependency among the observations coming from the same subject, we propose six different correlation structures. We identify the optimal allocations of units for different sequences of treatments. For two-treatment crossover designs, we show via simulations that the optimal allocations are reasonably robust to different choices of the correlation structures. We discuss a real example of multiple-treatment crossover experiments using Latin square designs. Using a simulation study, we show that a two-stage design with our locally D -optimal design at the second stage is more efficient than the uniform design, especially when the responses from the same subject are correlated.
ISSN:1559-8608
1559-8616
DOI:10.1007/s42519-020-00089-5