Gearbox Fault Diagnosis Using a Deep Learning Model With Limited Data Sample

Massive volumes of data are needed for deep learning (DL) models to provide accurate diagnosis results. Numerous studies of fault diagnosis systems have demonstrated the effectiveness of DL models over shallow machine learning (SL) in terms of feature extraction, feature dimensional reduction and di...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics Vol. 16; no. 10; pp. 6263 - 6271
Main Authors: Saufi, Syahril Ramadhan, Ahmad, Zair Asrar Bin, Leong, Mohd Salman, Lim, Meng Hee
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1551-3203, 1941-0050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Massive volumes of data are needed for deep learning (DL) models to provide accurate diagnosis results. Numerous studies of fault diagnosis systems have demonstrated the effectiveness of DL models over shallow machine learning (SL) in terms of feature extraction, feature dimensional reduction and diagnosis performance. Occasionally, during data acquisition, a problem with a sensor renders some of the data potentially unsuitable for further analysis, leaving only a small data sample. To compensate for this deficiency, a DL model based on a stacked sparse autoencoder (SSAE) model is designed to deal with limited sample data. In this article, the fault diagnosis system is developed based on time-frequency image pattern recognition. Therefore, two gearbox datasets are used to evaluate the proposed diagnosis system. The results from the experiments prove that the proposed system is capable of achieving high diagnostic accuracy even with limited sample data. The proposed fault diagnosis system achieved 100% and 99% diagnosis performance on experimental gearbox and wind turbine gearbox datasets, respectively. The proposed diagnosis system increased diagnosis performance between 10% and 20% over the standard SSAE model. In addition, the proposed model achieved higher diagnosis performance compared to deep neural network and convolutional neural networks models.
AbstractList Massive volumes of data are needed for deep learning (DL) models to provide accurate diagnosis results. Numerous studies of fault diagnosis systems have demonstrated the effectiveness of DL models over shallow machine learning (SL) in terms of feature extraction, feature dimensional reduction and diagnosis performance. Occasionally, during data acquisition, a problem with a sensor renders some of the data potentially unsuitable for further analysis, leaving only a small data sample. To compensate for this deficiency, a DL model based on a stacked sparse autoencoder (SSAE) model is designed to deal with limited sample data. In this article, the fault diagnosis system is developed based on time-frequency image pattern recognition. Therefore, two gearbox datasets are used to evaluate the proposed diagnosis system. The results from the experiments prove that the proposed system is capable of achieving high diagnostic accuracy even with limited sample data. The proposed fault diagnosis system achieved 100% and 99% diagnosis performance on experimental gearbox and wind turbine gearbox datasets, respectively. The proposed diagnosis system increased diagnosis performance between 10% and 20% over the standard SSAE model. In addition, the proposed model achieved higher diagnosis performance compared to deep neural network and convolutional neural networks models.
Author Ahmad, Zair Asrar Bin
Leong, Mohd Salman
Saufi, Syahril Ramadhan
Lim, Meng Hee
Author_xml – sequence: 1
  givenname: Syahril Ramadhan
  orcidid: 0000-0003-1317-7860
  surname: Saufi
  fullname: Saufi, Syahril Ramadhan
  email: msramadhan93@gmail.com
  organization: School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
– sequence: 2
  givenname: Zair Asrar Bin
  surname: Ahmad
  fullname: Ahmad, Zair Asrar Bin
  email: zair@mail.fkm.utm.my
  organization: School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
– sequence: 3
  givenname: Mohd Salman
  surname: Leong
  fullname: Leong, Mohd Salman
  email: salman.leong@gmail.com
  organization: School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
– sequence: 4
  givenname: Meng Hee
  surname: Lim
  fullname: Lim, Meng Hee
  email: limmenghee@gmail.com
  organization: Institute of Noise and Vibration, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
BookMark eNp9kMFLwzAUh4NMcJveBS8Bz53JS9M2R9ncHFQ8uOGxJO3bzOia2mSg_70dGx48eHrvwe97j_eNyKBxDRJyy9mEc6YeVsvlBBiwCagkzQAuyJCrmEeMSTboeyl5JICJKzLyfseYSJlQQ5IvUHfGfdG5PtSBzqzeNs5bT9feNluq6QyxpXkfao7zi6uwpu82fNDc7m3Ais500PRN79sar8nlRtceb851TNbzp9X0OcpfF8vpYx6VoHiItAHMTFxBotKSldpUqZFKgOFiU8qqklplGmXMWQWGGRnHaQkCMBaoKsNTMSb3p71t5z4P6EOxc4eu6U8WEPdfqyQG1afYKVV2zvsON0Xb2b3uvgvOiqOzondWHJ0VZ2c9kvxBSht0sK4Jnbb1f-DdCbSI-HsnUwkoCeIHJh55pA
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3291371
crossref_primary_10_1007_s11227_025_07075_3
crossref_primary_10_1177_16878132231157186
crossref_primary_10_3390_app11031280
crossref_primary_10_1016_j_conengprac_2024_105951
crossref_primary_10_1007_s11071_022_07341_6
crossref_primary_10_1016_j_knosys_2022_108730
crossref_primary_10_1109_TII_2020_3005965
crossref_primary_10_3390_app14177689
crossref_primary_10_1109_TIM_2021_3134999
crossref_primary_10_1007_s12206_025_0509_6
crossref_primary_10_1016_j_measurement_2021_110017
crossref_primary_10_1016_j_measurement_2025_118155
crossref_primary_10_1016_j_asoc_2021_107150
crossref_primary_10_1088_1361_6501_acf390
crossref_primary_10_1109_TMECH_2022_3191051
crossref_primary_10_1016_j_jprocont_2023_103086
crossref_primary_10_1016_j_knosys_2024_112443
crossref_primary_10_1109_JSEN_2022_3169341
crossref_primary_10_1109_JSEN_2024_3418413
crossref_primary_10_1016_j_engappai_2025_110503
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1109_TIM_2021_3085940
crossref_primary_10_32604_cmc_2023_033448
crossref_primary_10_1007_s42417_025_02085_0
crossref_primary_10_1109_TIM_2023_3330231
crossref_primary_10_1109_TIE_2022_3140403
crossref_primary_10_1109_TIM_2024_3522422
crossref_primary_10_3390_e23091130
crossref_primary_10_1007_s40430_025_05815_3
crossref_primary_10_1109_TIM_2021_3056644
crossref_primary_10_1109_TII_2022_3232766
crossref_primary_10_3390_pr12040676
crossref_primary_10_1016_j_isatra_2022_08_002
crossref_primary_10_1088_1361_6501_abfb1f
crossref_primary_10_1109_TII_2022_3228395
crossref_primary_10_1016_j_aei_2023_101890
crossref_primary_10_1109_TIM_2023_3338664
crossref_primary_10_1109_TII_2022_3208001
crossref_primary_10_1109_TII_2025_3552655
crossref_primary_10_1016_j_neucom_2021_04_066
crossref_primary_10_1109_TIM_2022_3210965
crossref_primary_10_1109_TNNLS_2022_3232394
crossref_primary_10_1007_s00170_022_09198_w
crossref_primary_10_1016_j_measurement_2021_110242
crossref_primary_10_3390_electronics13234807
crossref_primary_10_1109_TIM_2024_3366570
crossref_primary_10_1007_s42835_021_00825_2
crossref_primary_10_1109_TIM_2024_3481567
crossref_primary_10_1186_s10033_025_01341_4
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_primary_10_1177_10775463241313018
crossref_primary_10_1109_TIM_2021_3119135
crossref_primary_10_1016_j_jmapro_2025_08_035
crossref_primary_10_1016_j_energy_2020_119356
crossref_primary_10_1177_09596518231226359
crossref_primary_10_1109_TIM_2024_3395323
crossref_primary_10_3390_math10060972
crossref_primary_10_1016_j_measurement_2022_112346
crossref_primary_10_1016_j_anucene_2025_111704
crossref_primary_10_1038_s41598_025_12370_3
crossref_primary_10_1109_ACCESS_2020_3036250
crossref_primary_10_1016_j_eswa_2024_125937
crossref_primary_10_1109_TII_2022_3230684
crossref_primary_10_1109_TII_2023_3280317
crossref_primary_10_1016_j_simpat_2021_102469
crossref_primary_10_1007_s12206_022_0102_1
crossref_primary_10_1016_j_isatra_2021_02_042
crossref_primary_10_3390_jsan13050057
crossref_primary_10_1016_j_eswa_2023_122191
crossref_primary_10_1109_TIM_2023_3250258
crossref_primary_10_3390_s23125642
crossref_primary_10_1088_1361_6501_acddd9
crossref_primary_10_1109_TII_2021_3082517
crossref_primary_10_1109_TIM_2022_3220302
crossref_primary_10_1016_j_aei_2023_102204
crossref_primary_10_1007_s12206_025_0607_5
crossref_primary_10_1109_TII_2021_3119002
crossref_primary_10_1109_JSEN_2023_3264853
crossref_primary_10_1109_JSEN_2023_3343077
crossref_primary_10_1109_TII_2021_3102017
crossref_primary_10_1109_TIM_2021_3132327
crossref_primary_10_1109_TIE_2021_3063975
crossref_primary_10_3390_s21010018
crossref_primary_10_1007_s10462_022_10230_4
crossref_primary_10_1109_JESTPE_2024_3478378
crossref_primary_10_1109_JSEN_2024_3386804
crossref_primary_10_1364_AO_437625
crossref_primary_10_1109_TII_2024_3393002
crossref_primary_10_3390_s24144661
crossref_primary_10_1016_j_measurement_2023_112489
crossref_primary_10_3390_s22155814
crossref_primary_10_3390_pr11123360
crossref_primary_10_1016_j_neunet_2022_11_001
crossref_primary_10_1109_TFUZZ_2024_3406001
crossref_primary_10_3390_en16207191
crossref_primary_10_3390_app12157450
crossref_primary_10_1016_j_eswa_2023_119551
crossref_primary_10_1088_2631_8695_ad1c0c
crossref_primary_10_1002_admt_202500303
crossref_primary_10_3390_app11114996
crossref_primary_10_1016_j_jsv_2020_115879
crossref_primary_10_3233_JCM_247331
crossref_primary_10_1109_TIM_2023_3318686
crossref_primary_10_1002_aenm_202201132
crossref_primary_10_1109_TMECH_2023_3270901
crossref_primary_10_3390_electronics11111708
crossref_primary_10_3390_en14185967
crossref_primary_10_3390_machines12090608
crossref_primary_10_1007_s42417_025_02065_4
crossref_primary_10_1016_j_ymssp_2022_110089
crossref_primary_10_1109_TEC_2021_3075897
crossref_primary_10_1109_TII_2022_3185771
crossref_primary_10_1109_TIM_2023_3265095
crossref_primary_10_1016_j_engappai_2021_104279
crossref_primary_10_1088_1361_6501_acfab3
crossref_primary_10_1007_s10489_024_05429_7
crossref_primary_10_1177_14759217231165223
crossref_primary_10_1002_we_2857
crossref_primary_10_1109_ACCESS_2020_3026918
crossref_primary_10_1088_1361_6501_acf1ba
crossref_primary_10_1016_j_apm_2024_07_021
crossref_primary_10_3390_su132212757
crossref_primary_10_1016_j_aei_2024_102605
crossref_primary_10_23919_PCMP_2023_000241
crossref_primary_10_1109_JSEN_2025_3576761
crossref_primary_10_1109_TII_2021_3128205
crossref_primary_10_1186_s41601_022_00244_z
crossref_primary_10_3390_s25020540
crossref_primary_10_1016_j_asoc_2022_109120
crossref_primary_10_1109_TII_2024_3438255
crossref_primary_10_3389_fenrg_2022_998760
crossref_primary_10_1016_j_aei_2024_102681
crossref_primary_10_1016_j_ress_2022_108589
crossref_primary_10_1109_TII_2023_3240921
crossref_primary_10_1109_TII_2021_3112504
crossref_primary_10_3390_math11194081
crossref_primary_10_1007_s10845_023_02176_3
crossref_primary_10_1109_TII_2024_3413332
crossref_primary_10_1177_1748006X241254603
crossref_primary_10_1088_1361_6501_acdb8f
crossref_primary_10_1007_s42417_022_00768_6
crossref_primary_10_1016_j_eswa_2025_128601
crossref_primary_10_3390_s24144682
crossref_primary_10_1109_ACCESS_2022_3192005
crossref_primary_10_3390_math11122679
crossref_primary_10_1109_TII_2024_3353921
crossref_primary_10_1109_TIE_2021_3128895
crossref_primary_10_1109_TII_2022_3147828
crossref_primary_10_3390_s23010418
crossref_primary_10_1109_TIM_2021_3111977
crossref_primary_10_1016_j_aei_2025_103119
crossref_primary_10_1088_1361_6501_ad0afe
crossref_primary_10_1109_TII_2022_3229130
crossref_primary_10_1109_TSMC_2024_3461668
crossref_primary_10_1016_j_ress_2024_110708
crossref_primary_10_1016_j_ymssp_2023_110747
crossref_primary_10_1007_s10489_024_06094_6
crossref_primary_10_3390_s23104781
crossref_primary_10_1016_j_iot_2024_101164
crossref_primary_10_1088_1361_6501_ad1708
crossref_primary_10_1109_TII_2022_3222400
crossref_primary_10_1109_TMECH_2023_3292969
crossref_primary_10_1016_j_ins_2023_119795
crossref_primary_10_1016_j_nanoen_2023_109072
crossref_primary_10_1088_1361_6501_ac8303
crossref_primary_10_1109_TIE_2023_3323745
crossref_primary_10_1016_j_ymssp_2022_109353
crossref_primary_10_1088_1361_6501_adbf34
crossref_primary_10_1109_TII_2021_3091143
crossref_primary_10_1109_TIM_2022_3214501
crossref_primary_10_1111_exsy_13360
crossref_primary_10_3390_bdcc9090232
crossref_primary_10_1109_ACCESS_2023_3287879
crossref_primary_10_1016_j_engfailanal_2022_106219
crossref_primary_10_1016_j_ymssp_2024_111507
crossref_primary_10_1177_00368504211029777
crossref_primary_10_1109_TIM_2023_3259032
crossref_primary_10_1109_TIM_2024_3502726
Cites_doi 10.1016/j.knosys.2018.09.005
10.1109/ACCESS.2018.2882801
10.1109/TII.2018.2793246
10.1016/j.mechmachtheory.2015.03.013
10.1109/TII.2018.2864759
10.3390/e19060242
10.1109/TMECH.2017.2728371
10.1016/j.measurement.2015.11.047
10.1016/j.ymssp.2006.12.007
10.1016/j.ymssp.2005.12.002
10.1016/j.neucom.2015.09.116
10.1109/ICASSP.2013.6639344
10.1109/ACCESS.2019.2909756
10.1177/1475921717738713
10.1016/j.ymssp.2009.06.015
10.1109/ACCESS.2017.2728010
10.1109/IECON.2016.7793957
10.1109/ISBI.2014.6868041
10.1016/j.ymssp.2018.05.050
10.3390/e21040409
10.1016/j.neucom.2015.02.097
10.1016/j.ymssp.2017.06.022
10.1007/s00521-018-3490-5
10.3390/s19010122
10.1016/j.neucom.2017.02.016
10.1155/2015/320508
10.1155/2013/425740
10.1155/2017/5067651
10.1088/1749-4699/8/1/014008
10.1162/neco.2006.18.7.1527
10.3390/s16050623
10.1016/j.neucom.2018.03.014
10.1016/j.ymssp.2017.11.024
10.1016/j.ymssp.2019.02.051
10.1109/JSEN.2019.2898634
10.3390/s18113857
10.3390/en12030527
10.1016/j.inffus.2017.10.006
10.1016/j.knosys.2018.12.019
10.1016/j.sigpro.2016.07.028
10.1109/TIE.2016.2627020
10.1371/journal.pone.0122827
10.3390/s18051523
10.3390/s19040758
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.2967822
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 6271
ExternalDocumentID 10_1109_TII_2020_2967822
8962952
Genre orig-research
GrantInformation_xml – fundername: Higher Institution Centre of Excellence
  grantid: R.K130000.7809.4J225; R.K130000.7809.4J226; R.K130000.7843.4J227; R. J130000.7824.4J234; Q.K130000.2543.11H36; Q.J130000.2424.03G86; Q.J130000.3551.07G54
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-ab2e8b4d2697c0cabd7b5932b13fc5dd5a98ae5410d2b0b5447c232e43e9db173
IEDL.DBID RIE
ISICitedReferencesCount 204
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545243500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:10:54 EDT 2025
Sat Nov 29 04:16:51 EST 2025
Tue Nov 18 22:33:40 EST 2025
Wed Aug 27 02:37:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ab2e8b4d2697c0cabd7b5932b13fc5dd5a98ae5410d2b0b5447c232e43e9db173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1317-7860
PQID 2419496429
PQPubID 85507
PageCount 9
ParticipantIDs proquest_journals_2419496429
crossref_primary_10_1109_TII_2020_2967822
crossref_citationtrail_10_1109_TII_2020_2967822
ieee_primary_8962952
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
li (ref45) 2018
bechhoefer (ref48) 2014
van der maaten (ref35) 2008; 9
albelwi (ref47) 2017; 19
ref46
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
li (ref29) 2019
References_xml – ident: ref31
  doi: 10.1016/j.knosys.2018.09.005
– ident: ref2
  doi: 10.1109/ACCESS.2018.2882801
– ident: ref32
  doi: 10.1109/TII.2018.2793246
– ident: ref3
  doi: 10.1016/j.mechmachtheory.2015.03.013
– ident: ref12
  doi: 10.1109/TII.2018.2864759
– start-page: 1
  year: 2018
  ident: ref45
  article-title: Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
  publication-title: J Intell Manuf
– volume: 19
  year: 2017
  ident: ref47
  article-title: A framework for designing the architectures of deep convolutional neural networks
  publication-title: Entropy
  doi: 10.3390/e19060242
– ident: ref18
  doi: 10.1109/TMECH.2017.2728371
– ident: ref38
  doi: 10.1016/j.measurement.2015.11.047
– ident: ref27
  doi: 10.1016/j.ymssp.2006.12.007
– ident: ref41
  doi: 10.1016/j.ymssp.2005.12.002
– ident: ref10
  doi: 10.1016/j.neucom.2015.09.116
– ident: ref8
  doi: 10.1109/ICASSP.2013.6639344
– ident: ref6
  doi: 10.1109/ACCESS.2019.2909756
– ident: ref1
  doi: 10.1177/1475921717738713
– ident: ref42
  doi: 10.1016/j.ymssp.2009.06.015
– ident: ref30
  doi: 10.1109/ACCESS.2017.2728010
– ident: ref24
  doi: 10.1109/IECON.2016.7793957
– ident: ref7
  doi: 10.1109/ISBI.2014.6868041
– year: 2014
  ident: ref48
  article-title: Acoustics and vibration database
– ident: ref9
  doi: 10.1016/j.ymssp.2018.05.050
– start-page: 1025
  year: 2019
  ident: ref29
  article-title: Unsupervised gear fault diagnosis using raw vibration signal based on deep learning
  publication-title: Proc Prognostics Syst Health Manage Conf
– ident: ref39
  doi: 10.3390/e21040409
– ident: ref40
  doi: 10.1016/j.neucom.2015.02.097
– ident: ref20
  doi: 10.1016/j.ymssp.2017.06.022
– ident: ref36
  doi: 10.1007/s00521-018-3490-5
– ident: ref14
  doi: 10.3390/s19010122
– ident: ref11
  doi: 10.1016/j.neucom.2017.02.016
– ident: ref33
  doi: 10.1155/2015/320508
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref35
  article-title: Visualizing high-dimensional data using t-sne
  publication-title: J Mach Learn Res
– ident: ref26
  doi: 10.1155/2013/425740
– ident: ref34
  doi: 10.1155/2017/5067651
– ident: ref25
  doi: 10.1088/1749-4699/8/1/014008
– ident: ref23
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref44
  doi: 10.3390/s16050623
– ident: ref16
  doi: 10.1016/j.neucom.2018.03.014
– ident: ref4
  doi: 10.1016/j.ymssp.2017.11.024
– ident: ref5
  doi: 10.1016/j.ymssp.2019.02.051
– ident: ref21
  doi: 10.1109/JSEN.2019.2898634
– ident: ref13
  doi: 10.3390/s18113857
– ident: ref15
  doi: 10.3390/en12030527
– ident: ref17
  doi: 10.1016/j.inffus.2017.10.006
– ident: ref19
  doi: 10.1016/j.knosys.2018.12.019
– ident: ref22
  doi: 10.1016/j.sigpro.2016.07.028
– ident: ref46
  doi: 10.1109/TIE.2016.2627020
– ident: ref37
  doi: 10.1371/journal.pone.0122827
– ident: ref43
  doi: 10.3390/s18051523
– ident: ref28
  doi: 10.3390/s19040758
SSID ssj0037039
Score 2.6374743
Snippet Massive volumes of data are needed for deep learning (DL) models to provide accurate diagnosis results. Numerous studies of fault diagnosis systems have...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6263
SubjectTerms Analytical models
Artificial neural networks
Data models
Datasets
Deep learning
Diagnostic systems
Fault diagnosis
Feature extraction
gearbox
Gearboxes
image recognition
limited data sample
Machine learning
Neural networks
Object recognition
Optimization
Pattern recognition
stacked sparse autoencoder (SSAE)
System effectiveness
Training
Wind turbines
Title Gearbox Fault Diagnosis Using a Deep Learning Model With Limited Data Sample
URI https://ieeexplore.ieee.org/document/8962952
https://www.proquest.com/docview/2419496429
Volume 16
WOSCitedRecordID wos000545243500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsVtmDF8G0ye7mMUexVgtSBCv2FvYVLZS2tKn4893dJEVRBG857C7hm8k8sjPfIHQBVJgwg_meVCrzmGKxJ4AzL9KMxURkSqnEDZuIB4NkNILHGrpa98JorV3xmW7bR3eXr2ZyZX-VdRKICITG4G7EcVT0alVWlxrNBceNGgYeJT6triR96Az7fZMIEr9NILIO8ZsLcjNVfhhi5116u_97rz20U0aR-LoQ-z6q6ekB2v7CLdhAD3dGh8XsA_f4apLjblFSN15iVySAOe5qPcclveortjPRJvhlnL_hsucJd3nO8RO39MGH6Ll3O7y598rRCZ4kEOQeF0QngikSQSx9yYWKRWhCNRHQTIZKhRwSrkMW-IoIX4RGMNLEVppRDUoEMT1C9elsqo8RtuS1QvMMuAkFIhnxzIg9TKg5NuCM8SbqVGimsuQVt-MtJqnLL3xIDf6pxT8t8W-iy_WOecGp8cfahsV7va6EuolalcDS8qNbpiYYAQYmoYKT33edoi17dlGL10L1fLHSZ2hTvufj5eLc6dMnlt7HdQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5VBQn2sMtSEN0t4AMXJNI6jvOYI6KUVlsqJIrozfIrUKlqqzZd7c_HdtKKFQiJWw52En0zmUc88w3AG0yUCzM4jbQxZcQNzyOFkkeZ5TxnqjTGFGHYRD6bFYsFfmnBu1MvjLU2FJ_Zvr8MZ_lmow_-V9mgwIxh6gzug5RzRuturaPdTZzuYmBHTeMoYTQ5HkpSHMwnE5cKMtpnmHmXeM8Jhakqf5ji4F9GF__3Zk_gvIkjyfta8JfQsuuncPYbu2AHpp-cFqvNHRnJw6oiw7qobrknoUyASDK0dksagtUfxE9FW5Hvy-onabqeyFBWknyVnkD4GXwbfZx_GEfN8IRIM4yrSCpmC8UNyzDXVEtlcpW6YE3FSalTY1KJhbQpj6lhiioHaK5ddGV5YtGoOE-eQ3u9WdsXQDx9rbKyROmCgUxnsnSCT4vE3TaWnMsuDI5oCt0wi_sBFysRMgyKwuEvPP6iwb8Lb087tjWrxj_Wdjzep3UN1F3oHQUmms9uL1w4ghxdSoVXf9_1Gh6N55-nYjqZ3VzDY_-cujKvB-1qd7Av4aG-rZb73augW78AI3vKvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gearbox+Fault+Diagnosis+Using+a+Deep+Learning+Model+With+Limited+Data+Sample&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Saufi%2C+Syahril+Ramadhan&rft.au=Ahmad%2C+Zair+Asrar+Bin&rft.au=Leong%2C+Mohd+Salman&rft.au=Lim%2C+Meng+Hee&rft.date=2020-10-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=16&rft.issue=10&rft.spage=6263&rft.epage=6271&rft_id=info:doi/10.1109%2FTII.2020.2967822&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2020_2967822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon