Gearbox Fault Diagnosis Using a Deep Learning Model With Limited Data Sample
Massive volumes of data are needed for deep learning (DL) models to provide accurate diagnosis results. Numerous studies of fault diagnosis systems have demonstrated the effectiveness of DL models over shallow machine learning (SL) in terms of feature extraction, feature dimensional reduction and di...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 16; číslo 10; s. 6263 - 6271 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Massive volumes of data are needed for deep learning (DL) models to provide accurate diagnosis results. Numerous studies of fault diagnosis systems have demonstrated the effectiveness of DL models over shallow machine learning (SL) in terms of feature extraction, feature dimensional reduction and diagnosis performance. Occasionally, during data acquisition, a problem with a sensor renders some of the data potentially unsuitable for further analysis, leaving only a small data sample. To compensate for this deficiency, a DL model based on a stacked sparse autoencoder (SSAE) model is designed to deal with limited sample data. In this article, the fault diagnosis system is developed based on time-frequency image pattern recognition. Therefore, two gearbox datasets are used to evaluate the proposed diagnosis system. The results from the experiments prove that the proposed system is capable of achieving high diagnostic accuracy even with limited sample data. The proposed fault diagnosis system achieved 100% and 99% diagnosis performance on experimental gearbox and wind turbine gearbox datasets, respectively. The proposed diagnosis system increased diagnosis performance between 10% and 20% over the standard SSAE model. In addition, the proposed model achieved higher diagnosis performance compared to deep neural network and convolutional neural networks models. |
|---|---|
| AbstractList | Massive volumes of data are needed for deep learning (DL) models to provide accurate diagnosis results. Numerous studies of fault diagnosis systems have demonstrated the effectiveness of DL models over shallow machine learning (SL) in terms of feature extraction, feature dimensional reduction and diagnosis performance. Occasionally, during data acquisition, a problem with a sensor renders some of the data potentially unsuitable for further analysis, leaving only a small data sample. To compensate for this deficiency, a DL model based on a stacked sparse autoencoder (SSAE) model is designed to deal with limited sample data. In this article, the fault diagnosis system is developed based on time-frequency image pattern recognition. Therefore, two gearbox datasets are used to evaluate the proposed diagnosis system. The results from the experiments prove that the proposed system is capable of achieving high diagnostic accuracy even with limited sample data. The proposed fault diagnosis system achieved 100% and 99% diagnosis performance on experimental gearbox and wind turbine gearbox datasets, respectively. The proposed diagnosis system increased diagnosis performance between 10% and 20% over the standard SSAE model. In addition, the proposed model achieved higher diagnosis performance compared to deep neural network and convolutional neural networks models. |
| Author | Ahmad, Zair Asrar Bin Leong, Mohd Salman Saufi, Syahril Ramadhan Lim, Meng Hee |
| Author_xml | – sequence: 1 givenname: Syahril Ramadhan orcidid: 0000-0003-1317-7860 surname: Saufi fullname: Saufi, Syahril Ramadhan email: msramadhan93@gmail.com organization: School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia – sequence: 2 givenname: Zair Asrar Bin surname: Ahmad fullname: Ahmad, Zair Asrar Bin email: zair@mail.fkm.utm.my organization: School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia – sequence: 3 givenname: Mohd Salman surname: Leong fullname: Leong, Mohd Salman email: salman.leong@gmail.com organization: School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia – sequence: 4 givenname: Meng Hee surname: Lim fullname: Lim, Meng Hee email: limmenghee@gmail.com organization: Institute of Noise and Vibration, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia |
| BookMark | eNp9kMFLwzAUh4NMcJveBS8Bz53JS9M2R9ncHFQ8uOGxJO3bzOia2mSg_70dGx48eHrvwe97j_eNyKBxDRJyy9mEc6YeVsvlBBiwCagkzQAuyJCrmEeMSTboeyl5JICJKzLyfseYSJlQQ5IvUHfGfdG5PtSBzqzeNs5bT9feNluq6QyxpXkfao7zi6uwpu82fNDc7m3Ais500PRN79sar8nlRtceb851TNbzp9X0OcpfF8vpYx6VoHiItAHMTFxBotKSldpUqZFKgOFiU8qqklplGmXMWQWGGRnHaQkCMBaoKsNTMSb3p71t5z4P6EOxc4eu6U8WEPdfqyQG1afYKVV2zvsON0Xb2b3uvgvOiqOzondWHJ0VZ2c9kvxBSht0sK4Jnbb1f-DdCbSI-HsnUwkoCeIHJh55pA |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3291371 crossref_primary_10_1007_s11227_025_07075_3 crossref_primary_10_1177_16878132231157186 crossref_primary_10_3390_app11031280 crossref_primary_10_1016_j_conengprac_2024_105951 crossref_primary_10_1007_s11071_022_07341_6 crossref_primary_10_1016_j_knosys_2022_108730 crossref_primary_10_1109_TII_2020_3005965 crossref_primary_10_3390_app14177689 crossref_primary_10_1109_TIM_2021_3134999 crossref_primary_10_1007_s12206_025_0509_6 crossref_primary_10_1016_j_measurement_2021_110017 crossref_primary_10_1016_j_measurement_2025_118155 crossref_primary_10_1016_j_asoc_2021_107150 crossref_primary_10_1088_1361_6501_acf390 crossref_primary_10_1109_TMECH_2022_3191051 crossref_primary_10_1016_j_jprocont_2023_103086 crossref_primary_10_1016_j_knosys_2024_112443 crossref_primary_10_1109_JSEN_2022_3169341 crossref_primary_10_1109_JSEN_2024_3418413 crossref_primary_10_1016_j_engappai_2025_110503 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_1109_TIM_2021_3085940 crossref_primary_10_32604_cmc_2023_033448 crossref_primary_10_1007_s42417_025_02085_0 crossref_primary_10_1109_TIM_2023_3330231 crossref_primary_10_1109_TIE_2022_3140403 crossref_primary_10_1109_TIM_2024_3522422 crossref_primary_10_3390_e23091130 crossref_primary_10_1007_s40430_025_05815_3 crossref_primary_10_1109_TIM_2021_3056644 crossref_primary_10_1109_TII_2022_3232766 crossref_primary_10_3390_pr12040676 crossref_primary_10_1016_j_isatra_2022_08_002 crossref_primary_10_1088_1361_6501_abfb1f crossref_primary_10_1109_TII_2022_3228395 crossref_primary_10_1016_j_aei_2023_101890 crossref_primary_10_1109_TIM_2023_3338664 crossref_primary_10_1109_TII_2022_3208001 crossref_primary_10_1109_TII_2025_3552655 crossref_primary_10_1016_j_neucom_2021_04_066 crossref_primary_10_1109_TIM_2022_3210965 crossref_primary_10_1109_TNNLS_2022_3232394 crossref_primary_10_1007_s00170_022_09198_w crossref_primary_10_1016_j_measurement_2021_110242 crossref_primary_10_3390_electronics13234807 crossref_primary_10_1109_TIM_2024_3366570 crossref_primary_10_1007_s42835_021_00825_2 crossref_primary_10_1109_TIM_2024_3481567 crossref_primary_10_1186_s10033_025_01341_4 crossref_primary_10_1016_j_apenergy_2021_117766 crossref_primary_10_1177_10775463241313018 crossref_primary_10_1109_TIM_2021_3119135 crossref_primary_10_1016_j_jmapro_2025_08_035 crossref_primary_10_1016_j_energy_2020_119356 crossref_primary_10_1177_09596518231226359 crossref_primary_10_1109_TIM_2024_3395323 crossref_primary_10_3390_math10060972 crossref_primary_10_1016_j_measurement_2022_112346 crossref_primary_10_1016_j_anucene_2025_111704 crossref_primary_10_1038_s41598_025_12370_3 crossref_primary_10_1109_ACCESS_2020_3036250 crossref_primary_10_1016_j_eswa_2024_125937 crossref_primary_10_1109_TII_2022_3230684 crossref_primary_10_1109_TII_2023_3280317 crossref_primary_10_1016_j_simpat_2021_102469 crossref_primary_10_1007_s12206_022_0102_1 crossref_primary_10_1016_j_isatra_2021_02_042 crossref_primary_10_3390_jsan13050057 crossref_primary_10_1016_j_eswa_2023_122191 crossref_primary_10_1109_TIM_2023_3250258 crossref_primary_10_3390_s23125642 crossref_primary_10_1088_1361_6501_acddd9 crossref_primary_10_1109_TII_2021_3082517 crossref_primary_10_1109_TIM_2022_3220302 crossref_primary_10_1016_j_aei_2023_102204 crossref_primary_10_1007_s12206_025_0607_5 crossref_primary_10_1109_TII_2021_3119002 crossref_primary_10_1109_JSEN_2023_3264853 crossref_primary_10_1109_JSEN_2023_3343077 crossref_primary_10_1109_TII_2021_3102017 crossref_primary_10_1109_TIM_2021_3132327 crossref_primary_10_1109_TIE_2021_3063975 crossref_primary_10_3390_s21010018 crossref_primary_10_1007_s10462_022_10230_4 crossref_primary_10_1109_JESTPE_2024_3478378 crossref_primary_10_1109_JSEN_2024_3386804 crossref_primary_10_1364_AO_437625 crossref_primary_10_1109_TII_2024_3393002 crossref_primary_10_3390_s24144661 crossref_primary_10_1016_j_measurement_2023_112489 crossref_primary_10_3390_s22155814 crossref_primary_10_3390_pr11123360 crossref_primary_10_1016_j_neunet_2022_11_001 crossref_primary_10_1109_TFUZZ_2024_3406001 crossref_primary_10_3390_en16207191 crossref_primary_10_3390_app12157450 crossref_primary_10_1016_j_eswa_2023_119551 crossref_primary_10_1088_2631_8695_ad1c0c crossref_primary_10_1002_admt_202500303 crossref_primary_10_3390_app11114996 crossref_primary_10_1016_j_jsv_2020_115879 crossref_primary_10_3233_JCM_247331 crossref_primary_10_1109_TIM_2023_3318686 crossref_primary_10_1002_aenm_202201132 crossref_primary_10_1109_TMECH_2023_3270901 crossref_primary_10_3390_electronics11111708 crossref_primary_10_3390_en14185967 crossref_primary_10_3390_machines12090608 crossref_primary_10_1007_s42417_025_02065_4 crossref_primary_10_1016_j_ymssp_2022_110089 crossref_primary_10_1109_TEC_2021_3075897 crossref_primary_10_1109_TII_2022_3185771 crossref_primary_10_1109_TIM_2023_3265095 crossref_primary_10_1016_j_engappai_2021_104279 crossref_primary_10_1088_1361_6501_acfab3 crossref_primary_10_1007_s10489_024_05429_7 crossref_primary_10_1177_14759217231165223 crossref_primary_10_1002_we_2857 crossref_primary_10_1109_ACCESS_2020_3026918 crossref_primary_10_1088_1361_6501_acf1ba crossref_primary_10_1016_j_apm_2024_07_021 crossref_primary_10_3390_su132212757 crossref_primary_10_1016_j_aei_2024_102605 crossref_primary_10_23919_PCMP_2023_000241 crossref_primary_10_1109_JSEN_2025_3576761 crossref_primary_10_1109_TII_2021_3128205 crossref_primary_10_1186_s41601_022_00244_z crossref_primary_10_3390_s25020540 crossref_primary_10_1016_j_asoc_2022_109120 crossref_primary_10_1109_TII_2024_3438255 crossref_primary_10_3389_fenrg_2022_998760 crossref_primary_10_1016_j_aei_2024_102681 crossref_primary_10_1016_j_ress_2022_108589 crossref_primary_10_1109_TII_2023_3240921 crossref_primary_10_1109_TII_2021_3112504 crossref_primary_10_3390_math11194081 crossref_primary_10_1007_s10845_023_02176_3 crossref_primary_10_1109_TII_2024_3413332 crossref_primary_10_1177_1748006X241254603 crossref_primary_10_1088_1361_6501_acdb8f crossref_primary_10_1007_s42417_022_00768_6 crossref_primary_10_1016_j_eswa_2025_128601 crossref_primary_10_3390_s24144682 crossref_primary_10_1109_ACCESS_2022_3192005 crossref_primary_10_3390_math11122679 crossref_primary_10_1109_TII_2024_3353921 crossref_primary_10_1109_TIE_2021_3128895 crossref_primary_10_1109_TII_2022_3147828 crossref_primary_10_3390_s23010418 crossref_primary_10_1109_TIM_2021_3111977 crossref_primary_10_1016_j_aei_2025_103119 crossref_primary_10_1088_1361_6501_ad0afe crossref_primary_10_1109_TII_2022_3229130 crossref_primary_10_1109_TSMC_2024_3461668 crossref_primary_10_1016_j_ress_2024_110708 crossref_primary_10_1016_j_ymssp_2023_110747 crossref_primary_10_1007_s10489_024_06094_6 crossref_primary_10_3390_s23104781 crossref_primary_10_1016_j_iot_2024_101164 crossref_primary_10_1088_1361_6501_ad1708 crossref_primary_10_1109_TII_2022_3222400 crossref_primary_10_1109_TMECH_2023_3292969 crossref_primary_10_1016_j_ins_2023_119795 crossref_primary_10_1016_j_nanoen_2023_109072 crossref_primary_10_1088_1361_6501_ac8303 crossref_primary_10_1109_TIE_2023_3323745 crossref_primary_10_1016_j_ymssp_2022_109353 crossref_primary_10_1088_1361_6501_adbf34 crossref_primary_10_1109_TII_2021_3091143 crossref_primary_10_1109_TIM_2022_3214501 crossref_primary_10_1111_exsy_13360 crossref_primary_10_3390_bdcc9090232 crossref_primary_10_1109_ACCESS_2023_3287879 crossref_primary_10_1016_j_engfailanal_2022_106219 crossref_primary_10_1016_j_ymssp_2024_111507 crossref_primary_10_1177_00368504211029777 crossref_primary_10_1109_TIM_2023_3259032 crossref_primary_10_1109_TIM_2024_3502726 |
| Cites_doi | 10.1016/j.knosys.2018.09.005 10.1109/ACCESS.2018.2882801 10.1109/TII.2018.2793246 10.1016/j.mechmachtheory.2015.03.013 10.1109/TII.2018.2864759 10.3390/e19060242 10.1109/TMECH.2017.2728371 10.1016/j.measurement.2015.11.047 10.1016/j.ymssp.2006.12.007 10.1016/j.ymssp.2005.12.002 10.1016/j.neucom.2015.09.116 10.1109/ICASSP.2013.6639344 10.1109/ACCESS.2019.2909756 10.1177/1475921717738713 10.1016/j.ymssp.2009.06.015 10.1109/ACCESS.2017.2728010 10.1109/IECON.2016.7793957 10.1109/ISBI.2014.6868041 10.1016/j.ymssp.2018.05.050 10.3390/e21040409 10.1016/j.neucom.2015.02.097 10.1016/j.ymssp.2017.06.022 10.1007/s00521-018-3490-5 10.3390/s19010122 10.1016/j.neucom.2017.02.016 10.1155/2015/320508 10.1155/2013/425740 10.1155/2017/5067651 10.1088/1749-4699/8/1/014008 10.1162/neco.2006.18.7.1527 10.3390/s16050623 10.1016/j.neucom.2018.03.014 10.1016/j.ymssp.2017.11.024 10.1016/j.ymssp.2019.02.051 10.1109/JSEN.2019.2898634 10.3390/s18113857 10.3390/en12030527 10.1016/j.inffus.2017.10.006 10.1016/j.knosys.2018.12.019 10.1016/j.sigpro.2016.07.028 10.1109/TIE.2016.2627020 10.1371/journal.pone.0122827 10.3390/s18051523 10.3390/s19040758 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2020.2967822 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 6271 |
| ExternalDocumentID | 10_1109_TII_2020_2967822 8962952 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Higher Institution Centre of Excellence grantid: R.K130000.7809.4J225; R.K130000.7809.4J226; R.K130000.7843.4J227; R. J130000.7824.4J234; Q.K130000.2543.11H36; Q.J130000.2424.03G86; Q.J130000.3551.07G54 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-ab2e8b4d2697c0cabd7b5932b13fc5dd5a98ae5410d2b0b5447c232e43e9db173 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 204 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545243500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:10:54 EDT 2025 Sat Nov 29 04:16:51 EST 2025 Tue Nov 18 22:33:40 EST 2025 Wed Aug 27 02:37:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-ab2e8b4d2697c0cabd7b5932b13fc5dd5a98ae5410d2b0b5447c232e43e9db173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1317-7860 |
| PQID | 2419496429 |
| PQPubID | 85507 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2419496429 crossref_primary_10_1109_TII_2020_2967822 crossref_citationtrail_10_1109_TII_2020_2967822 ieee_primary_8962952 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 li (ref45) 2018 bechhoefer (ref48) 2014 van der maaten (ref35) 2008; 9 albelwi (ref47) 2017; 19 ref46 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 li (ref29) 2019 |
| References_xml | – ident: ref31 doi: 10.1016/j.knosys.2018.09.005 – ident: ref2 doi: 10.1109/ACCESS.2018.2882801 – ident: ref32 doi: 10.1109/TII.2018.2793246 – ident: ref3 doi: 10.1016/j.mechmachtheory.2015.03.013 – ident: ref12 doi: 10.1109/TII.2018.2864759 – start-page: 1 year: 2018 ident: ref45 article-title: Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation publication-title: J Intell Manuf – volume: 19 year: 2017 ident: ref47 article-title: A framework for designing the architectures of deep convolutional neural networks publication-title: Entropy doi: 10.3390/e19060242 – ident: ref18 doi: 10.1109/TMECH.2017.2728371 – ident: ref38 doi: 10.1016/j.measurement.2015.11.047 – ident: ref27 doi: 10.1016/j.ymssp.2006.12.007 – ident: ref41 doi: 10.1016/j.ymssp.2005.12.002 – ident: ref10 doi: 10.1016/j.neucom.2015.09.116 – ident: ref8 doi: 10.1109/ICASSP.2013.6639344 – ident: ref6 doi: 10.1109/ACCESS.2019.2909756 – ident: ref1 doi: 10.1177/1475921717738713 – ident: ref42 doi: 10.1016/j.ymssp.2009.06.015 – ident: ref30 doi: 10.1109/ACCESS.2017.2728010 – ident: ref24 doi: 10.1109/IECON.2016.7793957 – ident: ref7 doi: 10.1109/ISBI.2014.6868041 – year: 2014 ident: ref48 article-title: Acoustics and vibration database – ident: ref9 doi: 10.1016/j.ymssp.2018.05.050 – start-page: 1025 year: 2019 ident: ref29 article-title: Unsupervised gear fault diagnosis using raw vibration signal based on deep learning publication-title: Proc Prognostics Syst Health Manage Conf – ident: ref39 doi: 10.3390/e21040409 – ident: ref40 doi: 10.1016/j.neucom.2015.02.097 – ident: ref20 doi: 10.1016/j.ymssp.2017.06.022 – ident: ref36 doi: 10.1007/s00521-018-3490-5 – ident: ref14 doi: 10.3390/s19010122 – ident: ref11 doi: 10.1016/j.neucom.2017.02.016 – ident: ref33 doi: 10.1155/2015/320508 – volume: 9 start-page: 2579 year: 2008 ident: ref35 article-title: Visualizing high-dimensional data using t-sne publication-title: J Mach Learn Res – ident: ref26 doi: 10.1155/2013/425740 – ident: ref34 doi: 10.1155/2017/5067651 – ident: ref25 doi: 10.1088/1749-4699/8/1/014008 – ident: ref23 doi: 10.1162/neco.2006.18.7.1527 – ident: ref44 doi: 10.3390/s16050623 – ident: ref16 doi: 10.1016/j.neucom.2018.03.014 – ident: ref4 doi: 10.1016/j.ymssp.2017.11.024 – ident: ref5 doi: 10.1016/j.ymssp.2019.02.051 – ident: ref21 doi: 10.1109/JSEN.2019.2898634 – ident: ref13 doi: 10.3390/s18113857 – ident: ref15 doi: 10.3390/en12030527 – ident: ref17 doi: 10.1016/j.inffus.2017.10.006 – ident: ref19 doi: 10.1016/j.knosys.2018.12.019 – ident: ref22 doi: 10.1016/j.sigpro.2016.07.028 – ident: ref46 doi: 10.1109/TIE.2016.2627020 – ident: ref37 doi: 10.1371/journal.pone.0122827 – ident: ref43 doi: 10.3390/s18051523 – ident: ref28 doi: 10.3390/s19040758 |
| SSID | ssj0037039 |
| Score | 2.6374743 |
| Snippet | Massive volumes of data are needed for deep learning (DL) models to provide accurate diagnosis results. Numerous studies of fault diagnosis systems have... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6263 |
| SubjectTerms | Analytical models Artificial neural networks Data models Datasets Deep learning Diagnostic systems Fault diagnosis Feature extraction gearbox Gearboxes image recognition limited data sample Machine learning Neural networks Object recognition Optimization Pattern recognition stacked sparse autoencoder (SSAE) System effectiveness Training Wind turbines |
| Title | Gearbox Fault Diagnosis Using a Deep Learning Model With Limited Data Sample |
| URI | https://ieeexplore.ieee.org/document/8962952 https://www.proquest.com/docview/2419496429 |
| Volume | 16 |
| WOSCitedRecordID | wos000545243500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4qHvTgW6wvcvAiuDabTZqdo1irgoigorclj6kWSlvsVvz5JtltURTB2x4myzKZzGMz832EHEnHVW65TgJfSCKQYaK7hiXcdPNMOwEZikg2oW5v8-dnuJsjJ7NZGESMzWd4Gh7jXb4b2kn4VdbMocVBeoc7r1SrmtWaet3MWy5EbFSZJhln2fRKkkHz4fraF4KcnXJohYD4LQRFTpUfjjhGl87q_75rjazUWSQ9q7Z9nczhYIMsf8EW3CQ3l96GzfCDdvSkX9J21VLXG9PYJEA1bSOOaA2v-kIDJ1qfPvXKV1rPPNG2LjW91wE-eIs8di4ezq-SmjohsRzSMtGGY26E4y1QllltnDLSp2omzbpWOic15BqlSJnjhhkphLI-t0KRITiTqmybLAyGA9wh1NgcrfGJJUjt5VNtfY6T6zQ10jBwqkGaU20WtsYVD_QW_SLWFwwKr_8i6L-o9d8gx7MVowpT4w_ZzaDvmVyt6gbZn25YUR-6ceGTERDgCyrY_X3VHlkK76568fbJQvk2wQOyaN_L3vjtMNrTJ4Dnxqw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8hhrTtYWxjaB1s-IEXpIU6jt3kHhFdoVqpJq0I3iJ_XFmlqkU0RfvzZztpBWJC4i0PZyX6-Xwf8d3vAA6VE3lhhU7CvJBEEqdEjw1PhBkXmXYSM5Jx2EQ-HBbX1_hrA76ve2GIKBaf0XF4jHf5bm6X4VdZu8COQOUN7islpeB1t9bK7mZedzGyo6o0yQTPVpeSHNujft-ngoIfC-wEl_jICcWpKk9McfQvve2Xfdl7eNfEkeyk3vgPsEGzj_D2AbvgDgzOvBab-V_W08tpxbp1Ud1kwWKZANOsS3TLGoLVGxamok3Z1aT6w5quJ9bVlWa_dSAQ_gSXvR-j0_OkGZ6QWIFplWgjqDDSiQ7mllttXG6UD9ZMmo2tck5pLDQpmXInDDce0Nz66IpkRuhMmme7sDmbz-gzMGMLssaHlqi0l0-19VFOodPUKMPR5S1or9AsbcMsHgZcTMuYYXAsPf5lwL9s8G_B0XrFbc2q8YzsTsB7LddA3YL91YaVzbFblD4cQYk-pcIv_191AK_PRxeDctAf_tyDN-E9dWXePmxWd0v6Clv2vpos7r5F3foHA5rJ8w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gearbox+Fault+Diagnosis+Using+a+Deep+Learning+Model+With+Limited+Data+Sample&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Saufi%2C+Syahril+Ramadhan&rft.au=Ahmad%2C+Zair+Asrar+Bin&rft.au=Leong%2C+Mohd+Salman&rft.au=Lim%2C+Meng+Hee&rft.date=2020-10-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=16&rft.issue=10&rft.spage=6263&rft.epage=6271&rft_id=info:doi/10.1109%2FTII.2020.2967822&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2020_2967822 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |