Conceptual-temporal graph convolutional neural network model for stock price movement prediction and application
Stock price movement prediction is an important problem for trading decision-making. But it is a challenging task due to the nonlinearity and complexity of the stock trading data. This paper analyzes the linkage effect of price movement among stocks with the same concept segment through the dissipat...
Uložené v:
| Vydané v: | Soft computing (Berlin, Germany) Ročník 27; číslo 10; s. 6329 - 6344 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2023
|
| Predmet: | |
| ISSN: | 1432-7643, 1433-7479 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Stock price movement prediction is an important problem for trading decision-making. But it is a challenging task due to the nonlinearity and complexity of the stock trading data. This paper analyzes the linkage effect of price movement among stocks with the same concept segment through the dissipative structure theory, which is one of the major drivers for stock price movement. Considering the time-dimensional and concept-dimensional characteristics of the stock price movement, the stock conceptual-temporal network is constructed and the conceptual-temporal graph convolutional neural network model (CT-GCNN) is designed to map the linkage effect and predict the stock price movement. The experiment is conducted to validate the proposed model by utilizing the Chinese stock trading market data, which shows that CT-GCNN model outperforms the baseline deep learning models. Ten application cases are designed according to the conceptual quantity. The monthly highest stock yield is up to 16.276 and the lowest stock yield is 5.083, which reveals the stability and superiority of CT-GCNN model. |
|---|---|
| AbstractList | Stock price movement prediction is an important problem for trading decision-making. But it is a challenging task due to the nonlinearity and complexity of the stock trading data. This paper analyzes the linkage effect of price movement among stocks with the same concept segment through the dissipative structure theory, which is one of the major drivers for stock price movement. Considering the time-dimensional and concept-dimensional characteristics of the stock price movement, the stock conceptual-temporal network is constructed and the conceptual-temporal graph convolutional neural network model (CT-GCNN) is designed to map the linkage effect and predict the stock price movement. The experiment is conducted to validate the proposed model by utilizing the Chinese stock trading market data, which shows that CT-GCNN model outperforms the baseline deep learning models. Ten application cases are designed according to the conceptual quantity. The monthly highest stock yield is up to 16.276 and the lowest stock yield is 5.083, which reveals the stability and superiority of CT-GCNN model. |
| Author | Fuping, Zhang |
| Author_xml | – sequence: 1 givenname: Zhang orcidid: 0000-0001-5213-6805 surname: Fuping fullname: Fuping, Zhang email: zhangfuping@sdust.edu.cn organization: College of Economics and Management, Shandong University of Science and Technology |
| BookMark | eNp9kMlOwzAQQC1UJErhBzj5BwzeEidHVLFJlbjA2XInTkmb2JHtFvH3uCknDj3NonmjmXeNZs47i9Ado_eMUvUQKS0oJZQLQlXNClJcoDmTQhAlVT2bck5UKcUVuo5xSylnqhBzNC69AzumvelJssPog-nxJpjxC4N3B9_vU-dd7jm7D1NI3z7s8OAb2-PWBxyThx0eQwc2dw92sC7l0jYdHFFsXIPNOPYdmGN9gy5b00d7-xcX6PP56WP5SlbvL2_LxxUBXrNEzJryBmQBgguQistqDaqiUhpFZQu1qUwtOLNQc6AMKsVLw6qGrWVZloURYoGq014IPsZgWw1dmi5IwXS9ZlQfzemTOZ3N6cmcLjLK_6H5u8GEn_OQOEExD7uNDXrr9yGbi-eoX9QnhYg |
| CitedBy_id | crossref_primary_10_3390_electronics14091721 crossref_primary_10_3390_electronics14061221 crossref_primary_10_1177_00368504241236557 |
| Cites_doi | 10.1016/j.knosys.2021.107297 10.1016/j.asoc.2021.108084 10.1016/j.patcog.2021.108119 10.1007/s40009-019-00859-1 10.1016/j.ins.2014.03.096 10.1016/j.ins.2020.12.068 10.1007/BF02834910 10.1016/j.eswa.2013.04.013 10.1109/ACCESS.2019.2901842 10.1063/1.1668896 10.1016/j.chb.2019.03.021 10.1145/3065386 10.1016/j.eswa.2014.12.003 10.2469/dig.v36.n3.4222 10.1016/j.cor.2004.03.015 10.1111/j.1540-6261.1996.tb05202.x 10.1109/JAS.2021.1003976 10.1016/j.asoc.2022.109921 10.1145/3309547 10.1016/j.eswa.2014.10.001 10.1016/S0169-2070(98)00053-3 10.1007/s00500-020-05480-9 10.1016/j.eswa.2005.09.002 10.1109/JAS.2020.1003132 10.1016/j.patcog.2019.06.012 10.1016/S0169-2070(02)00058-4 10.1007/s12652-020-02057-0 10.1016/j.najef.2018.06.013 10.1007/s00500-016-2028-y 10.3846/jbem.2021.14181 10.1016/j.swevo.2011.02.002 10.1016/S0169-2070(01)00093-0 10.1016/j.asoc.2018.04.024 10.1007/s00500-021-05775-5 10.1109/TNNLS.2020.3036192 10.1016/j.patcog.2021.108218 10.1007/s00500-020-05174-2 10.1162/neco.1997.9.8.1735 10.1111/0022-1082.00082 10.3390/app10113961 10.3390/e22101162 10.1016/j.eswa.2018.07.065 10.1007/s00500-020-05500-8 10.1109/MSP.2018.2842646 10.1016/j.asoc.2018.11.008 10.3390/s21237957 10.1016/j.jfineco.2004.05.008 10.3390/app9224745 10.1016/j.knosys.2017.05.003 10.1016/j.eswa.2014.10.031 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00500-023-07915-5 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 6344 |
| ExternalDocumentID | 10_1007_s00500_023_07915_5 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c291t-ab02dc45c323c47248bc78044a704fc9a8a9321ec92c01c8726a18d1b46665a33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000939344900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Sat Nov 29 03:36:23 EST 2025 Tue Nov 18 22:41:04 EST 2025 Fri Feb 21 02:43:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Temporal characteristics Stocks price movement prediction Conceptual properties Conceptual-temporal graph convolutional neural network Application |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-ab02dc45c323c47248bc78044a704fc9a8a9321ec92c01c8726a18d1b46665a33 |
| ORCID | 0000-0001-5213-6805 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1007_s00500_023_07915_5 crossref_primary_10_1007_s00500_023_07915_5 springer_journals_10_1007_s00500_023_07915_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20230500 2023-05-00 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Gonzalez (CR17) 2018; 35 Chen, Chen, Lu (CR5) 2017; 21 Patel, Shah, Thakkar (CR38) 2015; 42 Fama, French (CR13) 1996; 51 Prigogine, Lefever (CR40) 1968; 48 Omer, Ahmet (CR36) 2018; 70 Aliu, Nadirov, Nuhiu (CR1) 2021; 22 Li, Xu, Geng, Hong (CR27) 2022 Milad, Seyed (CR31) 2021; 25 Lettau, Ludvigson (CR25) 2005; 76 Thi-Thu, Seokhoon (CR46) 2019; 9 Wen, Li, Zhang, Chen (CR52) 2019; 7 Chen, Liao, Hsieh (CR7) 2019; 101 Wu, Xu, Chen, Li, Zhao (CR55) 2022; 588 Zhao, Zeng, Liang, Kang, Liu (CR61) 2020; 12 Feng, He, Wang, Luo, Liu, Chua (CR14) 2019; 37 Wu, Wang, Su, Tang, Wu (CR54) 2020; 22 Zhou, Si, Fujita (CR64) 2017; 128 Cheng, Yang, Xiang, Liu (CR9) 2022; 121 Santos, Veronesi (CR43) 2006; 36 Hao, Gao (CR18) 2020; 10 Li, Wang, Li, Liu, Gong, Chen (CR26) 2014; 278 Omer, Ahmet (CR37) 2020; 26 Zhou, Ding, Zhang (CR63) 1997; 2 Chen, Hu, Tian, Wang, Cao, Wang (CR6) 2019; 6 Vasanthi, Seetharaman (CR49) 2021; 25 Zhang, Cai (CR57) 2021; 69 Krizhevsky, Sutskever, Hinton (CR23) 2017; 60 Silvio, Salvatore, Andrea (CR44) 2020; 7 Venkatesh, Balasubramanian, Kaliappan (CR50) 2021; 25 Derrac, Garcia, Molina (CR11) 2011; 1 Chandar (CR4) 2021; 25 Feng, Xu, Zuo, Chen, Lin, XiaHou (CR15) 2022 Hou, Wang, Zhong, Zhi (CR20) 2021; 8 Philip, Hendrik (CR39) 1999; 15 Basak, Kar, Saha, Khaidem, Dey (CR2) 2019; 47 Rather, Agarwal (CR42) 2015; 42 Ho, Huang (CR66) 2021; 21 CR16 Ticknor (CR48) 2013; 40 CR12 Zhipeng, Jing, Qi, Mengchu, Abdullah, Khaled (CR62) 2022; 33 CR53 Long, Chen, He, Wu, Ren (CR28) 2020; 91 Zhang, Chang, Meng, Xu, Xiang, Pan (CR59) 2019; 95 Qing, Karyl, Leggio (CR41) 2005; 32 Dennis, Charles (CR10) 2003; 19 Zhang, Hong (CR58) 2021 Zhao, Yang (CR60) 2022; 133 Nelson, Pereira, Oliveira (CR34) 2017; 2017 Hochreiter, Technische, Munchen, Informatik, Schmidhuber (CR19) 1997; 9 Zbikowski (CR56) 2015; 42 Zhou, Zhou, Yang, Yang (CR65) 2019; 115 Nicholas (CR35) 2001; 17 Naranjo, Nimalendran, Ryngaert (CR33) 1998; 53 Chen, Jiang, Zhang, Chen (CR8) 2021; 556 CR24 CR67 Bisoi, Dash, Parida (CR3) 2019; 74 CR22 Mevlut, Imran (CR30) 2006; 31 Naik, Mohan (CR32) 2020; 43 S Hochreiter (7915_CR19) 1997; 9 SF Milad (7915_CR31) 2021; 25 DMQ Nelson (7915_CR34) 2017; 2017 N Thi-Thu (7915_CR46) 2019; 9 Y Hao (7915_CR18) 2020; 10 I Prigogine (7915_CR40) 1968; 48 M Lettau (7915_CR25) 2005; 76 YJ Chen (7915_CR5) 2017; 21 D Cheng (7915_CR9) 2022; 121 FL Feng (7915_CR14) 2019; 37 F Aliu (7915_CR1) 2021; 22 BS Omer (7915_CR37) 2020; 26 O Dennis (7915_CR10) 2003; 19 C Qing (7915_CR41) 2005; 32 T Santos (7915_CR43) 2006; 36 W Chen (7915_CR8) 2021; 556 JH Zhao (7915_CR61) 2020; 12 AM Rather (7915_CR42) 2015; 42 B Silvio (7915_CR44) 2020; 7 N Naik (7915_CR32) 2020; 43 JW Long (7915_CR28) 2020; 91 EF Fama (7915_CR13) 1996; 51 K Zbikowski (7915_CR56) 2015; 42 S Basak (7915_CR2) 2019; 47 A Naranjo (7915_CR33) 1998; 53 M Vasanthi (7915_CR49) 2021; 25 D Wu (7915_CR54) 2020; 22 HF Philip (7915_CR39) 1999; 15 7915_CR24 7915_CR67 J Wu (7915_CR55) 2022; 588 7915_CR22 M Wen (7915_CR52) 2019; 7 A Krizhevsky (7915_CR23) 2017; 60 D Zhang (7915_CR57) 2021; 69 Q Zhang (7915_CR59) 2019; 95 S Feng (7915_CR15) 2022 TT Ho (7915_CR66) 2021; 21 RC Gonzalez (7915_CR17) 2018; 35 Q Li (7915_CR26) 2014; 278 7915_CR53 J Derrac (7915_CR11) 2011; 1 7915_CR12 F Zhou (7915_CR65) 2019; 115 7915_CR16 MW Li (7915_CR27) 2022 X Hou (7915_CR20) 2021; 8 SK Chandar (7915_CR4) 2021; 25 L Chen (7915_CR6) 2019; 6 T Mevlut (7915_CR30) 2006; 31 T Zhipeng (7915_CR62) 2022; 33 MY Chen (7915_CR7) 2019; 101 R Venkatesh (7915_CR50) 2021; 25 S Nicholas (7915_CR35) 2001; 17 J Patel (7915_CR38) 2015; 42 ZC Zhang (7915_CR58) 2021 YL Zhao (7915_CR60) 2022; 133 BS Omer (7915_CR36) 2018; 70 R Bisoi (7915_CR3) 2019; 74 JL Ticknor (7915_CR48) 2013; 40 SQ Zhou (7915_CR63) 1997; 2 LG Zhou (7915_CR64) 2017; 128 |
| References_xml | – ident: CR22 – volume: 53 start-page: 2029 issue: 6 year: 1998 end-page: 2057 ident: CR33 article-title: Stock returns, dividend yields, and Taxes publication-title: J Finance – volume: 43 start-page: 241 issue: 3 year: 2020 end-page: 246 ident: CR32 article-title: Intraday stock prediction based on deep neural network publication-title: Natl Acad Sci Lett – volume: 42 start-page: 3234 issue: 6 year: 2015 end-page: 3241 ident: CR42 article-title: Recurrent neural network and a hybrid model for prediction of stock returns publication-title: Expert Syst Appl – ident: CR16 – volume: 121 start-page: 108218 year: 2022 ident: CR9 article-title: Financial time series forecasting with multi-modality graph neural network publication-title: Pattern Recogn – ident: CR12 – volume: 101 start-page: 402 year: 2019 end-page: 408 ident: CR7 article-title: Modeling public mood and emotion: stock market trend prediction with anticipatory computing approach publication-title: Comput Hum Behav – volume: 69 start-page: 3931 issue: 3 year: 2021 end-page: 3943 ident: CR57 article-title: Improving stock price forecasting using a large volume of news headline text publication-title: CMC-Comput Mater Contin – volume: 115 start-page: 136 year: 2019 end-page: 151 ident: CR65 article-title: EMD2FNN: a strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction publication-title: Expert Syst Appl – year: 2021 ident: CR58 article-title: Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107297 – volume: 37 start-page: 1 issue: 2 year: 2019 end-page: 30 ident: CR14 article-title: Temporal relational ranking for stock prediction publication-title: ACM Trans Inf Syst – volume: 17 start-page: 459 issue: 3 year: 2001 end-page: 482 ident: CR35 article-title: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence publication-title: Int J Forecast – volume: 133 start-page: 109921 year: 2022 ident: CR60 article-title: Deep Learning-based Integrated Framework for stock price movement prediction publication-title: Appl Soft Comput – ident: CR67 – volume: 76 start-page: 583 issue: 3 year: 2005 end-page: 626 ident: CR25 article-title: Expected returns and expected dividend growth publication-title: J Financ Econ – volume: 25 start-page: 649 issue: 1 year: 2021 end-page: 658 ident: CR4 article-title: Grey Wolf optimization-Elman neural network model for stock price prediction publication-title: Soft Comput – volume: 278 start-page: 826 year: 2014 end-page: 840 ident: CR26 article-title: The effect of news and public mood on stock movements publication-title: Inf Sci – volume: 48 start-page: 1695 issue: 4 year: 1968 ident: CR40 article-title: Symmetry breaking instabilities in dissipative systems. II publication-title: J Chem Phys – volume: 51 start-page: 55 issue: 1 year: 1996 end-page: 84 ident: CR13 article-title: Multifactor Explan Asset Pricing Anom publication-title: J Financd – volume: 556 start-page: 67 year: 2021 end-page: 94 ident: CR8 article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction publication-title: Inf Sci – volume: 1 start-page: 3 issue: 1 year: 2011 end-page: 18 ident: CR11 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 ident: CR23 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun ACM – volume: 8 start-page: 1015 issue: 5 year: 2021 end-page: 1024 ident: CR20 article-title: ST-trader: a spatial-temporal deep neural network for modeling stock market movement publication-title: IEEE/CAA J Autom Sin – volume: 36 start-page: 38 issue: 3 year: 2006 end-page: 39 ident: CR43 article-title: Labor income and predictable stock returns publication-title: CFA Digest – volume: 95 start-page: 308 year: 2019 end-page: 318 ident: CR59 article-title: Learning graph structure via graph convolutional networks publication-title: Pattern Recogn – volume: 10 start-page: 3961 issue: 11 year: 2020 ident: CR18 article-title: Predicting the trend of stock market index using the hybrid neural network based on multiple time scale feature learning publication-title: Appl Sci – volume: 7 start-page: 28299 year: 2019 end-page: 28308 ident: CR52 article-title: Stock market trend prediction using high-order information of time series publication-title: IEEE Access – ident: CR53 – volume: 19 start-page: 453 issue: 3 year: 2003 end-page: 465 ident: CR10 article-title: Neural network forecasts of Canadian stock returns using accounting ratios publication-title: Int J Forecast – volume: 6 start-page: 236 issue: 1 year: 2019 end-page: 246 ident: CR6 article-title: Parallel planning: a new motion planning framework for autonomous driving publication-title: CAA J Autom Sin – volume: 25 start-page: 8483 issue: 13 year: 2021 end-page: 8513 ident: CR31 article-title: Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models publication-title: Soft Comput – volume: 25 start-page: 1659 issue: 2 year: 2021 end-page: 1680 ident: CR49 article-title: A hybrid method for biometric authentication-oriented face detection using autoregressive model with Bayes Backpropagation Neural Network publication-title: Soft Comput – volume: 21 start-page: 3735 issue: 13 year: 2017 end-page: 3757 ident: CR5 article-title: Enhancement of stock market forecasting using an improved fundamental analysis-based approach publication-title: Soft Comput – volume: 128 start-page: 93 issue: 6 year: 2017 end-page: 101 ident: CR64 article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method publication-title: Knowl-Based Syst – volume: 2 start-page: 35 issue: 1 year: 1997 end-page: 39 ident: CR63 article-title: Linearization learning method of BP neural networks publication-title: Wuhan Univ J Nat Sci – volume: 21 start-page: 7957 issue: 23 year: 2021 ident: CR66 article-title: Stock price movement prediction using sentiment analysis and candleStick chart representation publication-title: Sens-Basel – volume: 33 start-page: 973 issue: 3 year: 2022 end-page: 982 ident: CR62 article-title: Dynamic embedding projection-gated convolutional neural networks for text classification publication-title: IEEE Trans Neural Netw Learnng Syst – volume: 12 start-page: 745 issue: 1 year: 2020 end-page: 753 ident: CR61 article-title: Prediction model for stock price trend based on recurrent neural network publication-title: J Ambient Intell Humaniz Comput – year: 2022 ident: CR27 article-title: A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.108084 – volume: 7 start-page: 683 issue: 3 year: 2020 end-page: 692 ident: CR44 article-title: Deep learning and time series-to-image encoding for financial forecasting publication-title: IEEE/CAA J Autom Sin – volume: 22 start-page: 1162 issue: 10 year: 2020 ident: CR54 article-title: A labeling method for financial time series prediction based on trends publication-title: Entropy – volume: 588 start-page: 405 issue: C year: 2022 end-page: 424 ident: CR55 article-title: Price graphs: Utilizing the structural information of financial time series for stock prediction publication-title: Inf Sci Int J – volume: 47 start-page: 552 year: 2019 end-page: 567 ident: CR2 article-title: Predicting the direction of stock market prices using tree-based classifiers publication-title: North Am J Econ Finance – volume: 2017 start-page: 1419 year: 2017 end-page: 1426 ident: CR34 article-title: Stock market's price movement prediction with LSTM neural networks publication-title: Int Joint Conf Neural Netw (IJCNN) – year: 2022 ident: CR15 article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108119 – volume: 15 start-page: 1 issue: 1 year: 1999 end-page: 9 ident: CR39 article-title: Additive outliers, GARCH and forecasting volatility publication-title: Int J Forecast – volume: 40 start-page: 5501 issue: 14 year: 2013 end-page: 5506 ident: CR48 article-title: A Bayesian regularized artificial neural network for stock market forecasting publication-title: Expert Syst Appl – volume: 22 start-page: 503 issue: 2 year: 2021 end-page: 517 ident: CR1 article-title: Elements indicating stock price movements: the case of the companies listed on the V4 stock exchanges publication-title: J Bus Econ Manag – volume: 42 start-page: 1797 issue: 4 year: 2015 end-page: 1805 ident: CR56 article-title: Using volume weighted support vector machines with walk forward testing and feature selection for the purpose of creating stock trading strategy publication-title: Expert Syst Appl – volume: 26 start-page: 323 issue: 2 year: 2020 end-page: 334 ident: CR37 article-title: Financial trading model with stock bar chart image time series with deep convolutional neural networks publication-title: Intell Autom Soft Comput – volume: 35 start-page: 79 issue: 6 year: 2018 end-page: 87 ident: CR17 article-title: Deep convolutional neural networks publication-title: IEEE Signal Process Mag – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR19 article-title: Long short-term memory publication-title: Neural Comput – volume: 25 start-page: 4725 issue: 6 year: 2021 end-page: 4738 ident: CR50 article-title: Rainfall prediction using generative adversarial networks with convolution neural network publication-title: Soft Comput – volume: 74 start-page: 652 year: 2019 end-page: 678 ident: CR3 article-title: Hybrid variational mode decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis publication-title: Appl Soft Comput – volume: 91 year: 2020 ident: CR28 article-title: An integrated framework of deep learning and knowledge graph for prediction of stock price trend: an application in Chinese stock exchange market publication-title: Appl Soft Comput – volume: 9 start-page: 4745 issue: 22 year: 2019 ident: CR46 article-title: A novel approach to short-term stock price movement prediction using transfer learning publication-title: Appl Sci – volume: 32 start-page: 2499 issue: 10 year: 2005 end-page: 2512 ident: CR41 article-title: A comparison between Fama and French's model and artificial neural networks in predicting the Chinese stock market publication-title: Comput Oper Res – ident: CR24 – volume: 31 start-page: 41 issue: 1 year: 2006 end-page: 46 ident: CR30 article-title: Comparison of four different time series methods to forecast hepatitis A virus infection publication-title: Expert Syst Appl – volume: 70 start-page: 525 year: 2018 end-page: 538 ident: CR36 article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach publication-title: Appl Soft Comput – volume: 42 start-page: 2162 issue: 4 year: 2015 end-page: 2172 ident: CR38 article-title: Predicting stock market index using fusion of machine learning techniques publication-title: Expert Syst Appl – volume: 43 start-page: 241 issue: 3 year: 2020 ident: 7915_CR32 publication-title: Natl Acad Sci Lett doi: 10.1007/s40009-019-00859-1 – volume: 278 start-page: 826 year: 2014 ident: 7915_CR26 publication-title: Inf Sci doi: 10.1016/j.ins.2014.03.096 – volume: 556 start-page: 67 year: 2021 ident: 7915_CR8 publication-title: Inf Sci doi: 10.1016/j.ins.2020.12.068 – volume: 2 start-page: 35 issue: 1 year: 1997 ident: 7915_CR63 publication-title: Wuhan Univ J Nat Sci doi: 10.1007/BF02834910 – volume: 40 start-page: 5501 issue: 14 year: 2013 ident: 7915_CR48 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.04.013 – ident: 7915_CR22 – volume: 7 start-page: 28299 year: 2019 ident: 7915_CR52 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901842 – volume: 69 start-page: 3931 issue: 3 year: 2021 ident: 7915_CR57 publication-title: CMC-Comput Mater Contin – volume: 48 start-page: 1695 issue: 4 year: 1968 ident: 7915_CR40 publication-title: J Chem Phys doi: 10.1063/1.1668896 – volume: 101 start-page: 402 year: 2019 ident: 7915_CR7 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2019.03.021 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 7915_CR23 publication-title: Commun ACM doi: 10.1145/3065386 – volume: 42 start-page: 3234 issue: 6 year: 2015 ident: 7915_CR42 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.12.003 – volume: 36 start-page: 38 issue: 3 year: 2006 ident: 7915_CR43 publication-title: CFA Digest doi: 10.2469/dig.v36.n3.4222 – volume: 32 start-page: 2499 issue: 10 year: 2005 ident: 7915_CR41 publication-title: Comput Oper Res doi: 10.1016/j.cor.2004.03.015 – year: 2022 ident: 7915_CR15 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108119 – volume: 51 start-page: 55 issue: 1 year: 1996 ident: 7915_CR13 publication-title: J Financd doi: 10.1111/j.1540-6261.1996.tb05202.x – volume: 8 start-page: 1015 issue: 5 year: 2021 ident: 7915_CR20 publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2021.1003976 – volume: 133 start-page: 109921 year: 2022 ident: 7915_CR60 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109921 – volume: 2017 start-page: 1419 year: 2017 ident: 7915_CR34 publication-title: Int Joint Conf Neural Netw (IJCNN) – volume: 37 start-page: 1 issue: 2 year: 2019 ident: 7915_CR14 publication-title: ACM Trans Inf Syst doi: 10.1145/3309547 – volume: 42 start-page: 1797 issue: 4 year: 2015 ident: 7915_CR56 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.10.001 – volume: 15 start-page: 1 issue: 1 year: 1999 ident: 7915_CR39 publication-title: Int J Forecast doi: 10.1016/S0169-2070(98)00053-3 – volume: 25 start-page: 4725 issue: 6 year: 2021 ident: 7915_CR50 publication-title: Soft Comput doi: 10.1007/s00500-020-05480-9 – volume: 91 year: 2020 ident: 7915_CR28 publication-title: Appl Soft Comput – ident: 7915_CR12 – volume: 31 start-page: 41 issue: 1 year: 2006 ident: 7915_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.09.002 – volume: 7 start-page: 683 issue: 3 year: 2020 ident: 7915_CR44 publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2020.1003132 – volume: 95 start-page: 308 year: 2019 ident: 7915_CR59 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.06.012 – volume: 6 start-page: 236 issue: 1 year: 2019 ident: 7915_CR6 publication-title: CAA J Autom Sin – volume: 19 start-page: 453 issue: 3 year: 2003 ident: 7915_CR10 publication-title: Int J Forecast doi: 10.1016/S0169-2070(02)00058-4 – ident: 7915_CR16 – volume: 12 start-page: 745 issue: 1 year: 2020 ident: 7915_CR61 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02057-0 – volume: 47 start-page: 552 year: 2019 ident: 7915_CR2 publication-title: North Am J Econ Finance doi: 10.1016/j.najef.2018.06.013 – volume: 21 start-page: 3735 issue: 13 year: 2017 ident: 7915_CR5 publication-title: Soft Comput doi: 10.1007/s00500-016-2028-y – volume: 22 start-page: 503 issue: 2 year: 2021 ident: 7915_CR1 publication-title: J Bus Econ Manag doi: 10.3846/jbem.2021.14181 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 7915_CR11 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – ident: 7915_CR24 – volume: 17 start-page: 459 issue: 3 year: 2001 ident: 7915_CR35 publication-title: Int J Forecast doi: 10.1016/S0169-2070(01)00093-0 – volume: 70 start-page: 525 year: 2018 ident: 7915_CR36 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.04.024 – volume: 25 start-page: 8483 issue: 13 year: 2021 ident: 7915_CR31 publication-title: Soft Comput doi: 10.1007/s00500-021-05775-5 – volume: 33 start-page: 973 issue: 3 year: 2022 ident: 7915_CR62 publication-title: IEEE Trans Neural Netw Learnng Syst doi: 10.1109/TNNLS.2020.3036192 – year: 2021 ident: 7915_CR58 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107297 – volume: 121 start-page: 108218 year: 2022 ident: 7915_CR9 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2021.108218 – volume: 25 start-page: 649 issue: 1 year: 2021 ident: 7915_CR4 publication-title: Soft Comput doi: 10.1007/s00500-020-05174-2 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 7915_CR19 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 53 start-page: 2029 issue: 6 year: 1998 ident: 7915_CR33 publication-title: J Finance doi: 10.1111/0022-1082.00082 – ident: 7915_CR53 – volume: 10 start-page: 3961 issue: 11 year: 2020 ident: 7915_CR18 publication-title: Appl Sci doi: 10.3390/app10113961 – volume: 22 start-page: 1162 issue: 10 year: 2020 ident: 7915_CR54 publication-title: Entropy doi: 10.3390/e22101162 – volume: 115 start-page: 136 year: 2019 ident: 7915_CR65 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.07.065 – volume: 25 start-page: 1659 issue: 2 year: 2021 ident: 7915_CR49 publication-title: Soft Comput doi: 10.1007/s00500-020-05500-8 – volume: 35 start-page: 79 issue: 6 year: 2018 ident: 7915_CR17 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2018.2842646 – volume: 26 start-page: 323 issue: 2 year: 2020 ident: 7915_CR37 publication-title: Intell Autom Soft Comput – volume: 74 start-page: 652 year: 2019 ident: 7915_CR3 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.11.008 – volume: 21 start-page: 7957 issue: 23 year: 2021 ident: 7915_CR66 publication-title: Sens-Basel doi: 10.3390/s21237957 – volume: 76 start-page: 583 issue: 3 year: 2005 ident: 7915_CR25 publication-title: J Financ Econ doi: 10.1016/j.jfineco.2004.05.008 – ident: 7915_CR67 – volume: 9 start-page: 4745 issue: 22 year: 2019 ident: 7915_CR46 publication-title: Appl Sci doi: 10.3390/app9224745 – volume: 128 start-page: 93 issue: 6 year: 2017 ident: 7915_CR64 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.05.003 – year: 2022 ident: 7915_CR27 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.108084 – volume: 588 start-page: 405 issue: C year: 2022 ident: 7915_CR55 publication-title: Inf Sci Int J – volume: 42 start-page: 2162 issue: 4 year: 2015 ident: 7915_CR38 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.10.031 |
| SSID | ssj0021753 |
| Score | 2.3556175 |
| Snippet | Stock price movement prediction is an important problem for trading decision-making. But it is a challenging task due to the nonlinearity and complexity of the... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 6329 |
| SubjectTerms | Artificial Intelligence Computational Intelligence Control Data Analytics and Machine Learning Engineering Mathematical Logic and Foundations Mechatronics Robotics |
| Title | Conceptual-temporal graph convolutional neural network model for stock price movement prediction and application |
| URI | https://link.springer.com/article/10.1007/s00500-023-07915-5 |
| Volume | 27 |
| WOSCitedRecordID | wos000939344900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1433-7479 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fS8MwEMcPN33QB6dTcf4YefBNA02bLu2jDIcgDMEf7K0k1xTEUcfW-febZGnZQAb6VFqSUnJJ8w139zmAmyjQ1veONJRKU54oQZU5NVBhUeaoUlQyccUmxHicTCbps08KW9TR7rVL0v2pm2Q3iyoJqNljaCBSFtO4Bbuxpc3YM_rLe3PM8uxJIwSMdjQbrk-V-f0dm9vRpi_UbTGjzv8-7ggOvaQk96s5cAw7uuxCpy7XQPzq7cLBGnvwBGbDVcLiUk6p51NNicNXExuJ7mekeWaJl-7i4sWJK51DjNQlRjbiJ5lZKpF56rjjlbm1nh_blcgyJ2v-8VN4Gz28Dh-pL79AMUxZRaUKwhx5jFEYIRehMSRaXBGXIuAFpjKRRvwxjWmIAcNEhAPJkpwpY-ZBLKPoDNrlV6nPgeTK6ADOVCFZwQutJOYBBjofGLHAGZc9YLUVMvRsclsiY5o1VGU3wJkZ4MwNcBb34LbpM1uROba2vqsNl_lVutjS_OJvzS9hP3S2t4GQV9Cu5kt9DXv4XX0s5n1oPQnad5P0B2FY4Pw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4f-bBNw00abq2jzIcE-cQnLK3klw7EEcdW-ffb5KlZQMZ6FNJSEq5u_S-cHffAdz4XmZi70i5VBkVkQqp0rcGGhoqc1QxKhnZZhNhvx8Nh_GLKwqbldnuZUjS_qmrYjdDVeJR7WOoF8YsoMEmbAnTZsfc0V_fq2uW457UQEBjR-1wXanM7-9YdUersVDrYjr1_33cAew7SEnuFzZwCBtZ3oB62a6BuNPbgL0l7sEjmLQXBYtzOaaOn2pMLH01MZnoziL1nGG8tA-bL05s6xyioS7RsBE_ycSwEulZyzte6KGJ_JitROYpWYqPH8Nb52HQ7lLXfoEij1lBpfJ4iiJAn_soQq4ViYauSMjQEyOMZSQ1-GMZxhw9hlHIW5JFKVNaza1A-v4J1PKvPDsFkiqNAwRTI8lGYpQpiamHXpa2NFgQTMgmsFILCTpuctMiY5xUrMpWwIkWcGIFnARNuK32TBbMHGtX35WKS9wpna1Zfva35dew0x0895LeY__pHHa5tQOTFHkBtWI6zy5hG7-Lj9n0yprqD6pW4xA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXpwdVVcnzl407BNm27bo6iLoiziC28lmbYgLrVo9fc7SdNlBRHEU2mYlDIzYb4wM98AHAZebnLvyH2lcy5jHXFNtwYeGSpz1AlqFdthE9FoFD89JTdTXfy22r1NSTY9DYalqaz7VVb0J41vhrbE4xRvuBclIuThLMxLusmYoq7bu8fJlcvxUBIoIBxJwde1zfz8je-h6Xte1IabYef_P7oKKw5qspPGN9ZgJi-70GnHODB3qruwPMVJuA7VadPI-KHG3PFWjZmltWamQt15Kq0ZJkz7sHXkzI7UYQSBGcFJfGGVYSuiVctHXtOryQiZrUyVGZvKm2_Aw_D8_vSCu7EMHP1E1Fxpz89Qhhj4AcrIJwOjoTGSKvJkgYmKFYFCkWPioycwjvyBEnEmNJl_EKog2IS58rXMt4BlmvCBFLpQopBFrhVmHnp5NiAQIYVUPRCtRVJ0nOVmdMY4nbAtWwWnpODUKjgNe3A02VM1jB2_Sh-3Rkzd6X3_RXz7b-IHsHhzNkyvL0dXO7DkWzcwtZK7MFe_feR7sICf9fP727712i888uv0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conceptual-temporal+graph+convolutional+neural+network+model+for+stock+price+movement+prediction+and+application&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Fuping%2C+Zhang&rft.date=2023-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=27&rft.issue=10&rft.spage=6329&rft.epage=6344&rft_id=info:doi/10.1007%2Fs00500-023-07915-5&rft.externalDocID=10_1007_s00500_023_07915_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |