Conceptual-temporal graph convolutional neural network model for stock price movement prediction and application

Stock price movement prediction is an important problem for trading decision-making. But it is a challenging task due to the nonlinearity and complexity of the stock trading data. This paper analyzes the linkage effect of price movement among stocks with the same concept segment through the dissipat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Soft computing (Berlin, Germany) Ročník 27; číslo 10; s. 6329 - 6344
Hlavný autor: Fuping, Zhang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2023
Predmet:
ISSN:1432-7643, 1433-7479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Stock price movement prediction is an important problem for trading decision-making. But it is a challenging task due to the nonlinearity and complexity of the stock trading data. This paper analyzes the linkage effect of price movement among stocks with the same concept segment through the dissipative structure theory, which is one of the major drivers for stock price movement. Considering the time-dimensional and concept-dimensional characteristics of the stock price movement, the stock conceptual-temporal network is constructed and the conceptual-temporal graph convolutional neural network model (CT-GCNN) is designed to map the linkage effect and predict the stock price movement. The experiment is conducted to validate the proposed model by utilizing the Chinese stock trading market data, which shows that CT-GCNN model outperforms the baseline deep learning models. Ten application cases are designed according to the conceptual quantity. The monthly highest stock yield is up to 16.276 and the lowest stock yield is 5.083, which reveals the stability and superiority of CT-GCNN model.
AbstractList Stock price movement prediction is an important problem for trading decision-making. But it is a challenging task due to the nonlinearity and complexity of the stock trading data. This paper analyzes the linkage effect of price movement among stocks with the same concept segment through the dissipative structure theory, which is one of the major drivers for stock price movement. Considering the time-dimensional and concept-dimensional characteristics of the stock price movement, the stock conceptual-temporal network is constructed and the conceptual-temporal graph convolutional neural network model (CT-GCNN) is designed to map the linkage effect and predict the stock price movement. The experiment is conducted to validate the proposed model by utilizing the Chinese stock trading market data, which shows that CT-GCNN model outperforms the baseline deep learning models. Ten application cases are designed according to the conceptual quantity. The monthly highest stock yield is up to 16.276 and the lowest stock yield is 5.083, which reveals the stability and superiority of CT-GCNN model.
Author Fuping, Zhang
Author_xml – sequence: 1
  givenname: Zhang
  orcidid: 0000-0001-5213-6805
  surname: Fuping
  fullname: Fuping, Zhang
  email: zhangfuping@sdust.edu.cn
  organization: College of Economics and Management, Shandong University of Science and Technology
BookMark eNp9kMlOwzAQQC1UJErhBzj5BwzeEidHVLFJlbjA2XInTkmb2JHtFvH3uCknDj3NonmjmXeNZs47i9Ado_eMUvUQKS0oJZQLQlXNClJcoDmTQhAlVT2bck5UKcUVuo5xSylnqhBzNC69AzumvelJssPog-nxJpjxC4N3B9_vU-dd7jm7D1NI3z7s8OAb2-PWBxyThx0eQwc2dw92sC7l0jYdHFFsXIPNOPYdmGN9gy5b00d7-xcX6PP56WP5SlbvL2_LxxUBXrNEzJryBmQBgguQistqDaqiUhpFZQu1qUwtOLNQc6AMKsVLw6qGrWVZloURYoGq014IPsZgWw1dmi5IwXS9ZlQfzemTOZ3N6cmcLjLK_6H5u8GEn_OQOEExD7uNDXrr9yGbi-eoX9QnhYg
CitedBy_id crossref_primary_10_3390_electronics14091721
crossref_primary_10_3390_electronics14061221
crossref_primary_10_1177_00368504241236557
Cites_doi 10.1016/j.knosys.2021.107297
10.1016/j.asoc.2021.108084
10.1016/j.patcog.2021.108119
10.1007/s40009-019-00859-1
10.1016/j.ins.2014.03.096
10.1016/j.ins.2020.12.068
10.1007/BF02834910
10.1016/j.eswa.2013.04.013
10.1109/ACCESS.2019.2901842
10.1063/1.1668896
10.1016/j.chb.2019.03.021
10.1145/3065386
10.1016/j.eswa.2014.12.003
10.2469/dig.v36.n3.4222
10.1016/j.cor.2004.03.015
10.1111/j.1540-6261.1996.tb05202.x
10.1109/JAS.2021.1003976
10.1016/j.asoc.2022.109921
10.1145/3309547
10.1016/j.eswa.2014.10.001
10.1016/S0169-2070(98)00053-3
10.1007/s00500-020-05480-9
10.1016/j.eswa.2005.09.002
10.1109/JAS.2020.1003132
10.1016/j.patcog.2019.06.012
10.1016/S0169-2070(02)00058-4
10.1007/s12652-020-02057-0
10.1016/j.najef.2018.06.013
10.1007/s00500-016-2028-y
10.3846/jbem.2021.14181
10.1016/j.swevo.2011.02.002
10.1016/S0169-2070(01)00093-0
10.1016/j.asoc.2018.04.024
10.1007/s00500-021-05775-5
10.1109/TNNLS.2020.3036192
10.1016/j.patcog.2021.108218
10.1007/s00500-020-05174-2
10.1162/neco.1997.9.8.1735
10.1111/0022-1082.00082
10.3390/app10113961
10.3390/e22101162
10.1016/j.eswa.2018.07.065
10.1007/s00500-020-05500-8
10.1109/MSP.2018.2842646
10.1016/j.asoc.2018.11.008
10.3390/s21237957
10.1016/j.jfineco.2004.05.008
10.3390/app9224745
10.1016/j.knosys.2017.05.003
10.1016/j.eswa.2014.10.031
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00500-023-07915-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 6344
ExternalDocumentID 10_1007_s00500_023_07915_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-ab02dc45c323c47248bc78044a704fc9a8a9321ec92c01c8726a18d1b46665a33
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000939344900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Sat Nov 29 03:36:23 EST 2025
Tue Nov 18 22:41:04 EST 2025
Fri Feb 21 02:43:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Temporal characteristics
Stocks price movement prediction
Conceptual properties
Conceptual-temporal graph convolutional neural network
Application
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ab02dc45c323c47248bc78044a704fc9a8a9321ec92c01c8726a18d1b46665a33
ORCID 0000-0001-5213-6805
PageCount 16
ParticipantIDs crossref_citationtrail_10_1007_s00500_023_07915_5
crossref_primary_10_1007_s00500_023_07915_5
springer_journals_10_1007_s00500_023_07915_5
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 5
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Gonzalez (CR17) 2018; 35
Chen, Chen, Lu (CR5) 2017; 21
Patel, Shah, Thakkar (CR38) 2015; 42
Fama, French (CR13) 1996; 51
Prigogine, Lefever (CR40) 1968; 48
Omer, Ahmet (CR36) 2018; 70
Aliu, Nadirov, Nuhiu (CR1) 2021; 22
Li, Xu, Geng, Hong (CR27) 2022
Milad, Seyed (CR31) 2021; 25
Lettau, Ludvigson (CR25) 2005; 76
Thi-Thu, Seokhoon (CR46) 2019; 9
Wen, Li, Zhang, Chen (CR52) 2019; 7
Chen, Liao, Hsieh (CR7) 2019; 101
Wu, Xu, Chen, Li, Zhao (CR55) 2022; 588
Zhao, Zeng, Liang, Kang, Liu (CR61) 2020; 12
Feng, He, Wang, Luo, Liu, Chua (CR14) 2019; 37
Wu, Wang, Su, Tang, Wu (CR54) 2020; 22
Zhou, Si, Fujita (CR64) 2017; 128
Cheng, Yang, Xiang, Liu (CR9) 2022; 121
Santos, Veronesi (CR43) 2006; 36
Hao, Gao (CR18) 2020; 10
Li, Wang, Li, Liu, Gong, Chen (CR26) 2014; 278
Omer, Ahmet (CR37) 2020; 26
Zhou, Ding, Zhang (CR63) 1997; 2
Chen, Hu, Tian, Wang, Cao, Wang (CR6) 2019; 6
Vasanthi, Seetharaman (CR49) 2021; 25
Zhang, Cai (CR57) 2021; 69
Krizhevsky, Sutskever, Hinton (CR23) 2017; 60
Silvio, Salvatore, Andrea (CR44) 2020; 7
Venkatesh, Balasubramanian, Kaliappan (CR50) 2021; 25
Derrac, Garcia, Molina (CR11) 2011; 1
Chandar (CR4) 2021; 25
Feng, Xu, Zuo, Chen, Lin, XiaHou (CR15) 2022
Hou, Wang, Zhong, Zhi (CR20) 2021; 8
Philip, Hendrik (CR39) 1999; 15
Basak, Kar, Saha, Khaidem, Dey (CR2) 2019; 47
Rather, Agarwal (CR42) 2015; 42
Ho, Huang (CR66) 2021; 21
CR16
Ticknor (CR48) 2013; 40
CR12
Zhipeng, Jing, Qi, Mengchu, Abdullah, Khaled (CR62) 2022; 33
CR53
Long, Chen, He, Wu, Ren (CR28) 2020; 91
Zhang, Chang, Meng, Xu, Xiang, Pan (CR59) 2019; 95
Qing, Karyl, Leggio (CR41) 2005; 32
Dennis, Charles (CR10) 2003; 19
Zhang, Hong (CR58) 2021
Zhao, Yang (CR60) 2022; 133
Nelson, Pereira, Oliveira (CR34) 2017; 2017
Hochreiter, Technische, Munchen, Informatik, Schmidhuber (CR19) 1997; 9
Zbikowski (CR56) 2015; 42
Zhou, Zhou, Yang, Yang (CR65) 2019; 115
Nicholas (CR35) 2001; 17
Naranjo, Nimalendran, Ryngaert (CR33) 1998; 53
Chen, Jiang, Zhang, Chen (CR8) 2021; 556
CR24
CR67
Bisoi, Dash, Parida (CR3) 2019; 74
CR22
Mevlut, Imran (CR30) 2006; 31
Naik, Mohan (CR32) 2020; 43
S Hochreiter (7915_CR19) 1997; 9
SF Milad (7915_CR31) 2021; 25
DMQ Nelson (7915_CR34) 2017; 2017
N Thi-Thu (7915_CR46) 2019; 9
Y Hao (7915_CR18) 2020; 10
I Prigogine (7915_CR40) 1968; 48
M Lettau (7915_CR25) 2005; 76
YJ Chen (7915_CR5) 2017; 21
D Cheng (7915_CR9) 2022; 121
FL Feng (7915_CR14) 2019; 37
F Aliu (7915_CR1) 2021; 22
BS Omer (7915_CR37) 2020; 26
O Dennis (7915_CR10) 2003; 19
C Qing (7915_CR41) 2005; 32
T Santos (7915_CR43) 2006; 36
W Chen (7915_CR8) 2021; 556
JH Zhao (7915_CR61) 2020; 12
AM Rather (7915_CR42) 2015; 42
B Silvio (7915_CR44) 2020; 7
N Naik (7915_CR32) 2020; 43
JW Long (7915_CR28) 2020; 91
EF Fama (7915_CR13) 1996; 51
K Zbikowski (7915_CR56) 2015; 42
S Basak (7915_CR2) 2019; 47
A Naranjo (7915_CR33) 1998; 53
M Vasanthi (7915_CR49) 2021; 25
D Wu (7915_CR54) 2020; 22
HF Philip (7915_CR39) 1999; 15
7915_CR24
7915_CR67
J Wu (7915_CR55) 2022; 588
7915_CR22
M Wen (7915_CR52) 2019; 7
A Krizhevsky (7915_CR23) 2017; 60
D Zhang (7915_CR57) 2021; 69
Q Zhang (7915_CR59) 2019; 95
S Feng (7915_CR15) 2022
TT Ho (7915_CR66) 2021; 21
RC Gonzalez (7915_CR17) 2018; 35
Q Li (7915_CR26) 2014; 278
7915_CR53
J Derrac (7915_CR11) 2011; 1
7915_CR12
F Zhou (7915_CR65) 2019; 115
7915_CR16
MW Li (7915_CR27) 2022
X Hou (7915_CR20) 2021; 8
SK Chandar (7915_CR4) 2021; 25
L Chen (7915_CR6) 2019; 6
T Mevlut (7915_CR30) 2006; 31
T Zhipeng (7915_CR62) 2022; 33
MY Chen (7915_CR7) 2019; 101
R Venkatesh (7915_CR50) 2021; 25
S Nicholas (7915_CR35) 2001; 17
J Patel (7915_CR38) 2015; 42
ZC Zhang (7915_CR58) 2021
YL Zhao (7915_CR60) 2022; 133
BS Omer (7915_CR36) 2018; 70
R Bisoi (7915_CR3) 2019; 74
JL Ticknor (7915_CR48) 2013; 40
SQ Zhou (7915_CR63) 1997; 2
LG Zhou (7915_CR64) 2017; 128
References_xml – ident: CR22
– volume: 53
  start-page: 2029
  issue: 6
  year: 1998
  end-page: 2057
  ident: CR33
  article-title: Stock returns, dividend yields, and Taxes
  publication-title: J Finance
– volume: 43
  start-page: 241
  issue: 3
  year: 2020
  end-page: 246
  ident: CR32
  article-title: Intraday stock prediction based on deep neural network
  publication-title: Natl Acad Sci Lett
– volume: 42
  start-page: 3234
  issue: 6
  year: 2015
  end-page: 3241
  ident: CR42
  article-title: Recurrent neural network and a hybrid model for prediction of stock returns
  publication-title: Expert Syst Appl
– ident: CR16
– volume: 121
  start-page: 108218
  year: 2022
  ident: CR9
  article-title: Financial time series forecasting with multi-modality graph neural network
  publication-title: Pattern Recogn
– ident: CR12
– volume: 101
  start-page: 402
  year: 2019
  end-page: 408
  ident: CR7
  article-title: Modeling public mood and emotion: stock market trend prediction with anticipatory computing approach
  publication-title: Comput Hum Behav
– volume: 69
  start-page: 3931
  issue: 3
  year: 2021
  end-page: 3943
  ident: CR57
  article-title: Improving stock price forecasting using a large volume of news headline text
  publication-title: CMC-Comput Mater Contin
– volume: 115
  start-page: 136
  year: 2019
  end-page: 151
  ident: CR65
  article-title: EMD2FNN: a strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction
  publication-title: Expert Syst Appl
– year: 2021
  ident: CR58
  article-title: Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107297
– volume: 37
  start-page: 1
  issue: 2
  year: 2019
  end-page: 30
  ident: CR14
  article-title: Temporal relational ranking for stock prediction
  publication-title: ACM Trans Inf Syst
– volume: 17
  start-page: 459
  issue: 3
  year: 2001
  end-page: 482
  ident: CR35
  article-title: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence
  publication-title: Int J Forecast
– volume: 133
  start-page: 109921
  year: 2022
  ident: CR60
  article-title: Deep Learning-based Integrated Framework for stock price movement prediction
  publication-title: Appl Soft Comput
– ident: CR67
– volume: 76
  start-page: 583
  issue: 3
  year: 2005
  end-page: 626
  ident: CR25
  article-title: Expected returns and expected dividend growth
  publication-title: J Financ Econ
– volume: 25
  start-page: 649
  issue: 1
  year: 2021
  end-page: 658
  ident: CR4
  article-title: Grey Wolf optimization-Elman neural network model for stock price prediction
  publication-title: Soft Comput
– volume: 278
  start-page: 826
  year: 2014
  end-page: 840
  ident: CR26
  article-title: The effect of news and public mood on stock movements
  publication-title: Inf Sci
– volume: 48
  start-page: 1695
  issue: 4
  year: 1968
  ident: CR40
  article-title: Symmetry breaking instabilities in dissipative systems. II
  publication-title: J Chem Phys
– volume: 51
  start-page: 55
  issue: 1
  year: 1996
  end-page: 84
  ident: CR13
  article-title: Multifactor Explan Asset Pricing Anom
  publication-title: J Financd
– volume: 556
  start-page: 67
  year: 2021
  end-page: 94
  ident: CR8
  article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction
  publication-title: Inf Sci
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  end-page: 18
  ident: CR11
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  ident: CR23
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
– volume: 8
  start-page: 1015
  issue: 5
  year: 2021
  end-page: 1024
  ident: CR20
  article-title: ST-trader: a spatial-temporal deep neural network for modeling stock market movement
  publication-title: IEEE/CAA J Autom Sin
– volume: 36
  start-page: 38
  issue: 3
  year: 2006
  end-page: 39
  ident: CR43
  article-title: Labor income and predictable stock returns
  publication-title: CFA Digest
– volume: 95
  start-page: 308
  year: 2019
  end-page: 318
  ident: CR59
  article-title: Learning graph structure via graph convolutional networks
  publication-title: Pattern Recogn
– volume: 10
  start-page: 3961
  issue: 11
  year: 2020
  ident: CR18
  article-title: Predicting the trend of stock market index using the hybrid neural network based on multiple time scale feature learning
  publication-title: Appl Sci
– volume: 7
  start-page: 28299
  year: 2019
  end-page: 28308
  ident: CR52
  article-title: Stock market trend prediction using high-order information of time series
  publication-title: IEEE Access
– ident: CR53
– volume: 19
  start-page: 453
  issue: 3
  year: 2003
  end-page: 465
  ident: CR10
  article-title: Neural network forecasts of Canadian stock returns using accounting ratios
  publication-title: Int J Forecast
– volume: 6
  start-page: 236
  issue: 1
  year: 2019
  end-page: 246
  ident: CR6
  article-title: Parallel planning: a new motion planning framework for autonomous driving
  publication-title: CAA J Autom Sin
– volume: 25
  start-page: 8483
  issue: 13
  year: 2021
  end-page: 8513
  ident: CR31
  article-title: Forecasting stock price using integrated artificial neural network and metaheuristic algorithms compared to time series models
  publication-title: Soft Comput
– volume: 25
  start-page: 1659
  issue: 2
  year: 2021
  end-page: 1680
  ident: CR49
  article-title: A hybrid method for biometric authentication-oriented face detection using autoregressive model with Bayes Backpropagation Neural Network
  publication-title: Soft Comput
– volume: 21
  start-page: 3735
  issue: 13
  year: 2017
  end-page: 3757
  ident: CR5
  article-title: Enhancement of stock market forecasting using an improved fundamental analysis-based approach
  publication-title: Soft Comput
– volume: 128
  start-page: 93
  issue: 6
  year: 2017
  end-page: 101
  ident: CR64
  article-title: Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method
  publication-title: Knowl-Based Syst
– volume: 2
  start-page: 35
  issue: 1
  year: 1997
  end-page: 39
  ident: CR63
  article-title: Linearization learning method of BP neural networks
  publication-title: Wuhan Univ J Nat Sci
– volume: 21
  start-page: 7957
  issue: 23
  year: 2021
  ident: CR66
  article-title: Stock price movement prediction using sentiment analysis and candleStick chart representation
  publication-title: Sens-Basel
– volume: 33
  start-page: 973
  issue: 3
  year: 2022
  end-page: 982
  ident: CR62
  article-title: Dynamic embedding projection-gated convolutional neural networks for text classification
  publication-title: IEEE Trans Neural Netw Learnng Syst
– volume: 12
  start-page: 745
  issue: 1
  year: 2020
  end-page: 753
  ident: CR61
  article-title: Prediction model for stock price trend based on recurrent neural network
  publication-title: J Ambient Intell Humaniz Comput
– year: 2022
  ident: CR27
  article-title: A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.108084
– volume: 7
  start-page: 683
  issue: 3
  year: 2020
  end-page: 692
  ident: CR44
  article-title: Deep learning and time series-to-image encoding for financial forecasting
  publication-title: IEEE/CAA J Autom Sin
– volume: 22
  start-page: 1162
  issue: 10
  year: 2020
  ident: CR54
  article-title: A labeling method for financial time series prediction based on trends
  publication-title: Entropy
– volume: 588
  start-page: 405
  issue: C
  year: 2022
  end-page: 424
  ident: CR55
  article-title: Price graphs: Utilizing the structural information of financial time series for stock prediction
  publication-title: Inf Sci Int J
– volume: 47
  start-page: 552
  year: 2019
  end-page: 567
  ident: CR2
  article-title: Predicting the direction of stock market prices using tree-based classifiers
  publication-title: North Am J Econ Finance
– volume: 2017
  start-page: 1419
  year: 2017
  end-page: 1426
  ident: CR34
  article-title: Stock market's price movement prediction with LSTM neural networks
  publication-title: Int Joint Conf Neural Netw (IJCNN)
– year: 2022
  ident: CR15
  article-title: Relation-aware dynamic attributed graph attention network for stocks recommendation
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108119
– volume: 15
  start-page: 1
  issue: 1
  year: 1999
  end-page: 9
  ident: CR39
  article-title: Additive outliers, GARCH and forecasting volatility
  publication-title: Int J Forecast
– volume: 40
  start-page: 5501
  issue: 14
  year: 2013
  end-page: 5506
  ident: CR48
  article-title: A Bayesian regularized artificial neural network for stock market forecasting
  publication-title: Expert Syst Appl
– volume: 22
  start-page: 503
  issue: 2
  year: 2021
  end-page: 517
  ident: CR1
  article-title: Elements indicating stock price movements: the case of the companies listed on the V4 stock exchanges
  publication-title: J Bus Econ Manag
– volume: 42
  start-page: 1797
  issue: 4
  year: 2015
  end-page: 1805
  ident: CR56
  article-title: Using volume weighted support vector machines with walk forward testing and feature selection for the purpose of creating stock trading strategy
  publication-title: Expert Syst Appl
– volume: 26
  start-page: 323
  issue: 2
  year: 2020
  end-page: 334
  ident: CR37
  article-title: Financial trading model with stock bar chart image time series with deep convolutional neural networks
  publication-title: Intell Autom Soft Comput
– volume: 35
  start-page: 79
  issue: 6
  year: 2018
  end-page: 87
  ident: CR17
  article-title: Deep convolutional neural networks
  publication-title: IEEE Signal Process Mag
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR19
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 25
  start-page: 4725
  issue: 6
  year: 2021
  end-page: 4738
  ident: CR50
  article-title: Rainfall prediction using generative adversarial networks with convolution neural network
  publication-title: Soft Comput
– volume: 74
  start-page: 652
  year: 2019
  end-page: 678
  ident: CR3
  article-title: Hybrid variational mode decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis
  publication-title: Appl Soft Comput
– volume: 91
  year: 2020
  ident: CR28
  article-title: An integrated framework of deep learning and knowledge graph for prediction of stock price trend: an application in Chinese stock exchange market
  publication-title: Appl Soft Comput
– volume: 9
  start-page: 4745
  issue: 22
  year: 2019
  ident: CR46
  article-title: A novel approach to short-term stock price movement prediction using transfer learning
  publication-title: Appl Sci
– volume: 32
  start-page: 2499
  issue: 10
  year: 2005
  end-page: 2512
  ident: CR41
  article-title: A comparison between Fama and French's model and artificial neural networks in predicting the Chinese stock market
  publication-title: Comput Oper Res
– ident: CR24
– volume: 31
  start-page: 41
  issue: 1
  year: 2006
  end-page: 46
  ident: CR30
  article-title: Comparison of four different time series methods to forecast hepatitis A virus infection
  publication-title: Expert Syst Appl
– volume: 70
  start-page: 525
  year: 2018
  end-page: 538
  ident: CR36
  article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach
  publication-title: Appl Soft Comput
– volume: 42
  start-page: 2162
  issue: 4
  year: 2015
  end-page: 2172
  ident: CR38
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Syst Appl
– volume: 43
  start-page: 241
  issue: 3
  year: 2020
  ident: 7915_CR32
  publication-title: Natl Acad Sci Lett
  doi: 10.1007/s40009-019-00859-1
– volume: 278
  start-page: 826
  year: 2014
  ident: 7915_CR26
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.03.096
– volume: 556
  start-page: 67
  year: 2021
  ident: 7915_CR8
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.12.068
– volume: 2
  start-page: 35
  issue: 1
  year: 1997
  ident: 7915_CR63
  publication-title: Wuhan Univ J Nat Sci
  doi: 10.1007/BF02834910
– volume: 40
  start-page: 5501
  issue: 14
  year: 2013
  ident: 7915_CR48
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.04.013
– ident: 7915_CR22
– volume: 7
  start-page: 28299
  year: 2019
  ident: 7915_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901842
– volume: 69
  start-page: 3931
  issue: 3
  year: 2021
  ident: 7915_CR57
  publication-title: CMC-Comput Mater Contin
– volume: 48
  start-page: 1695
  issue: 4
  year: 1968
  ident: 7915_CR40
  publication-title: J Chem Phys
  doi: 10.1063/1.1668896
– volume: 101
  start-page: 402
  year: 2019
  ident: 7915_CR7
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2019.03.021
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 7915_CR23
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 42
  start-page: 3234
  issue: 6
  year: 2015
  ident: 7915_CR42
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.12.003
– volume: 36
  start-page: 38
  issue: 3
  year: 2006
  ident: 7915_CR43
  publication-title: CFA Digest
  doi: 10.2469/dig.v36.n3.4222
– volume: 32
  start-page: 2499
  issue: 10
  year: 2005
  ident: 7915_CR41
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2004.03.015
– year: 2022
  ident: 7915_CR15
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108119
– volume: 51
  start-page: 55
  issue: 1
  year: 1996
  ident: 7915_CR13
  publication-title: J Financd
  doi: 10.1111/j.1540-6261.1996.tb05202.x
– volume: 8
  start-page: 1015
  issue: 5
  year: 2021
  ident: 7915_CR20
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2021.1003976
– volume: 133
  start-page: 109921
  year: 2022
  ident: 7915_CR60
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109921
– volume: 2017
  start-page: 1419
  year: 2017
  ident: 7915_CR34
  publication-title: Int Joint Conf Neural Netw (IJCNN)
– volume: 37
  start-page: 1
  issue: 2
  year: 2019
  ident: 7915_CR14
  publication-title: ACM Trans Inf Syst
  doi: 10.1145/3309547
– volume: 42
  start-page: 1797
  issue: 4
  year: 2015
  ident: 7915_CR56
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.001
– volume: 15
  start-page: 1
  issue: 1
  year: 1999
  ident: 7915_CR39
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(98)00053-3
– volume: 25
  start-page: 4725
  issue: 6
  year: 2021
  ident: 7915_CR50
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05480-9
– volume: 91
  year: 2020
  ident: 7915_CR28
  publication-title: Appl Soft Comput
– ident: 7915_CR12
– volume: 31
  start-page: 41
  issue: 1
  year: 2006
  ident: 7915_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2005.09.002
– volume: 7
  start-page: 683
  issue: 3
  year: 2020
  ident: 7915_CR44
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2020.1003132
– volume: 95
  start-page: 308
  year: 2019
  ident: 7915_CR59
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.06.012
– volume: 6
  start-page: 236
  issue: 1
  year: 2019
  ident: 7915_CR6
  publication-title: CAA J Autom Sin
– volume: 19
  start-page: 453
  issue: 3
  year: 2003
  ident: 7915_CR10
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(02)00058-4
– ident: 7915_CR16
– volume: 12
  start-page: 745
  issue: 1
  year: 2020
  ident: 7915_CR61
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02057-0
– volume: 47
  start-page: 552
  year: 2019
  ident: 7915_CR2
  publication-title: North Am J Econ Finance
  doi: 10.1016/j.najef.2018.06.013
– volume: 21
  start-page: 3735
  issue: 13
  year: 2017
  ident: 7915_CR5
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2028-y
– volume: 22
  start-page: 503
  issue: 2
  year: 2021
  ident: 7915_CR1
  publication-title: J Bus Econ Manag
  doi: 10.3846/jbem.2021.14181
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 7915_CR11
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– ident: 7915_CR24
– volume: 17
  start-page: 459
  issue: 3
  year: 2001
  ident: 7915_CR35
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(01)00093-0
– volume: 70
  start-page: 525
  year: 2018
  ident: 7915_CR36
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.04.024
– volume: 25
  start-page: 8483
  issue: 13
  year: 2021
  ident: 7915_CR31
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05775-5
– volume: 33
  start-page: 973
  issue: 3
  year: 2022
  ident: 7915_CR62
  publication-title: IEEE Trans Neural Netw Learnng Syst
  doi: 10.1109/TNNLS.2020.3036192
– year: 2021
  ident: 7915_CR58
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107297
– volume: 121
  start-page: 108218
  year: 2022
  ident: 7915_CR9
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2021.108218
– volume: 25
  start-page: 649
  issue: 1
  year: 2021
  ident: 7915_CR4
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05174-2
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 7915_CR19
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 53
  start-page: 2029
  issue: 6
  year: 1998
  ident: 7915_CR33
  publication-title: J Finance
  doi: 10.1111/0022-1082.00082
– ident: 7915_CR53
– volume: 10
  start-page: 3961
  issue: 11
  year: 2020
  ident: 7915_CR18
  publication-title: Appl Sci
  doi: 10.3390/app10113961
– volume: 22
  start-page: 1162
  issue: 10
  year: 2020
  ident: 7915_CR54
  publication-title: Entropy
  doi: 10.3390/e22101162
– volume: 115
  start-page: 136
  year: 2019
  ident: 7915_CR65
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.07.065
– volume: 25
  start-page: 1659
  issue: 2
  year: 2021
  ident: 7915_CR49
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05500-8
– volume: 35
  start-page: 79
  issue: 6
  year: 2018
  ident: 7915_CR17
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2018.2842646
– volume: 26
  start-page: 323
  issue: 2
  year: 2020
  ident: 7915_CR37
  publication-title: Intell Autom Soft Comput
– volume: 74
  start-page: 652
  year: 2019
  ident: 7915_CR3
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.11.008
– volume: 21
  start-page: 7957
  issue: 23
  year: 2021
  ident: 7915_CR66
  publication-title: Sens-Basel
  doi: 10.3390/s21237957
– volume: 76
  start-page: 583
  issue: 3
  year: 2005
  ident: 7915_CR25
  publication-title: J Financ Econ
  doi: 10.1016/j.jfineco.2004.05.008
– ident: 7915_CR67
– volume: 9
  start-page: 4745
  issue: 22
  year: 2019
  ident: 7915_CR46
  publication-title: Appl Sci
  doi: 10.3390/app9224745
– volume: 128
  start-page: 93
  issue: 6
  year: 2017
  ident: 7915_CR64
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.05.003
– year: 2022
  ident: 7915_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.108084
– volume: 588
  start-page: 405
  issue: C
  year: 2022
  ident: 7915_CR55
  publication-title: Inf Sci Int J
– volume: 42
  start-page: 2162
  issue: 4
  year: 2015
  ident: 7915_CR38
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.031
SSID ssj0021753
Score 2.3556175
Snippet Stock price movement prediction is an important problem for trading decision-making. But it is a challenging task due to the nonlinearity and complexity of the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 6329
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Data Analytics and Machine Learning
Engineering
Mathematical Logic and Foundations
Mechatronics
Robotics
Title Conceptual-temporal graph convolutional neural network model for stock price movement prediction and application
URI https://link.springer.com/article/10.1007/s00500-023-07915-5
Volume 27
WOSCitedRecordID wos000939344900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fS8MwEMcPN33QB6dTcf4YefBNA02bLu2jDIcgDMEf7K0k1xTEUcfW-febZGnZQAb6VFqSUnJJ8w139zmAmyjQ1veONJRKU54oQZU5NVBhUeaoUlQyccUmxHicTCbps08KW9TR7rVL0v2pm2Q3iyoJqNljaCBSFtO4Bbuxpc3YM_rLe3PM8uxJIwSMdjQbrk-V-f0dm9vRpi_UbTGjzv8-7ggOvaQk96s5cAw7uuxCpy7XQPzq7cLBGnvwBGbDVcLiUk6p51NNicNXExuJ7mekeWaJl-7i4sWJK51DjNQlRjbiJ5lZKpF56rjjlbm1nh_blcgyJ2v-8VN4Gz28Dh-pL79AMUxZRaUKwhx5jFEYIRehMSRaXBGXIuAFpjKRRvwxjWmIAcNEhAPJkpwpY-ZBLKPoDNrlV6nPgeTK6ADOVCFZwQutJOYBBjofGLHAGZc9YLUVMvRsclsiY5o1VGU3wJkZ4MwNcBb34LbpM1uROba2vqsNl_lVutjS_OJvzS9hP3S2t4GQV9Cu5kt9DXv4XX0s5n1oPQnad5P0B2FY4Pw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4f-bBNw00abq2jzIcE-cQnLK3klw7EEcdW-ffb5KlZQMZ6FNJSEq5u_S-cHffAdz4XmZi70i5VBkVkQqp0rcGGhoqc1QxKhnZZhNhvx8Nh_GLKwqbldnuZUjS_qmrYjdDVeJR7WOoF8YsoMEmbAnTZsfc0V_fq2uW457UQEBjR-1wXanM7-9YdUersVDrYjr1_33cAew7SEnuFzZwCBtZ3oB62a6BuNPbgL0l7sEjmLQXBYtzOaaOn2pMLH01MZnoziL1nGG8tA-bL05s6xyioS7RsBE_ycSwEulZyzte6KGJ_JitROYpWYqPH8Nb52HQ7lLXfoEij1lBpfJ4iiJAn_soQq4ViYauSMjQEyOMZSQ1-GMZxhw9hlHIW5JFKVNaza1A-v4J1PKvPDsFkiqNAwRTI8lGYpQpiamHXpa2NFgQTMgmsFILCTpuctMiY5xUrMpWwIkWcGIFnARNuK32TBbMHGtX35WKS9wpna1Zfva35dew0x0895LeY__pHHa5tQOTFHkBtWI6zy5hG7-Lj9n0yprqD6pW4xA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXpwdVVcnzl407BNm27bo6iLoiziC28lmbYgLrVo9fc7SdNlBRHEU2mYlDIzYb4wM98AHAZebnLvyH2lcy5jHXFNtwYeGSpz1AlqFdthE9FoFD89JTdTXfy22r1NSTY9DYalqaz7VVb0J41vhrbE4xRvuBclIuThLMxLusmYoq7bu8fJlcvxUBIoIBxJwde1zfz8je-h6Xte1IabYef_P7oKKw5qspPGN9ZgJi-70GnHODB3qruwPMVJuA7VadPI-KHG3PFWjZmltWamQt15Kq0ZJkz7sHXkzI7UYQSBGcFJfGGVYSuiVctHXtOryQiZrUyVGZvKm2_Aw_D8_vSCu7EMHP1E1Fxpz89Qhhj4AcrIJwOjoTGSKvJkgYmKFYFCkWPioycwjvyBEnEmNJl_EKog2IS58rXMt4BlmvCBFLpQopBFrhVmHnp5NiAQIYVUPRCtRVJ0nOVmdMY4nbAtWwWnpODUKjgNe3A02VM1jB2_Sh-3Rkzd6X3_RXz7b-IHsHhzNkyvL0dXO7DkWzcwtZK7MFe_feR7sICf9fP727712i888uv0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conceptual-temporal+graph+convolutional+neural+network+model+for+stock+price+movement+prediction+and+application&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Fuping%2C+Zhang&rft.date=2023-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=27&rft.issue=10&rft.spage=6329&rft.epage=6344&rft_id=info:doi/10.1007%2Fs00500-023-07915-5&rft.externalDocID=10_1007_s00500_023_07915_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon