A Novel ANN-Based Adaptive Ultrasonic Measurement System for Accurate Water Level Monitoring
Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental conditions such as temperature and relative humidity among a few other parameters. Presence of acoustic and electronic noise also influences an ul...
Uloženo v:
| Vydáno v: | IEEE transactions on instrumentation and measurement Ročník 69; číslo 6; s. 3359 - 3369 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental conditions such as temperature and relative humidity among a few other parameters. Presence of acoustic and electronic noise also influences an ultrasonic sensor based distance measurement system. Existing standard techniques assume that the temperature and relative humidity levels remain constant throughout the measurement medium. In our proposed system, we measure water level in storage tanks of different depths, which exhibits a gradient of temperature and relative humidity across the measurement medium. Hence, the standard ultrasonic measurement system (UMS) is not able to estimate distance accurately. In this article, we propose an algorithm based on modified neural network architecture to increase the accuracy of UMS and also to extend the standard operating range of the ultrasonic sensor used. This article presents a novel approach to reduce measurement error using Levenberg-Marquardt backpropagation artificial neural network (LMBP-ANN) architecture. The proposed model is validated by comparing the actual water level at various depths under different environmental conditions with the output of the trained neural network. The measurement error in the proposed model is bounded by ±1 cm in the distance measurements ranging from 2 to 500 cm. This model is able to extend the maximum standard operating range of the ultrasonic sensor (HC-SR04 model) from 400 to 500 cm. The proposed model is evaluated using mean squared error (MSE) and <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-values to establish the effectiveness. |
|---|---|
| AbstractList | Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental conditions such as temperature and relative humidity among a few other parameters. Presence of acoustic and electronic noise also influences an ultrasonic sensor based distance measurement system. Existing standard techniques assume that the temperature and relative humidity levels remain constant throughout the measurement medium. In our proposed system, we measure water level in storage tanks of different depths, which exhibits a gradient of temperature and relative humidity across the measurement medium. Hence, the standard ultrasonic measurement system (UMS) is not able to estimate distance accurately. In this article, we propose an algorithm based on modified neural network architecture to increase the accuracy of UMS and also to extend the standard operating range of the ultrasonic sensor used. This article presents a novel approach to reduce measurement error using Levenberg-Marquardt backpropagation artificial neural network (LMBP-ANN) architecture. The proposed model is validated by comparing the actual water level at various depths under different environmental conditions with the output of the trained neural network. The measurement error in the proposed model is bounded by ±1 cm in the distance measurements ranging from 2 to 500 cm. This model is able to extend the maximum standard operating range of the ultrasonic sensor (HC-SR04 model) from 400 to 500 cm. The proposed model is evaluated using mean squared error (MSE) and <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>-values to establish the effectiveness. Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental conditions such as temperature and relative humidity among a few other parameters. Presence of acoustic and electronic noise also influences an ultrasonic sensor based distance measurement system. Existing standard techniques assume that the temperature and relative humidity levels remain constant throughout the measurement medium. In our proposed system, we measure water level in storage tanks of different depths, which exhibits a gradient of temperature and relative humidity across the measurement medium. Hence, the standard ultrasonic measurement system (UMS) is not able to estimate distance accurately. In this article, we propose an algorithm based on modified neural network architecture to increase the accuracy of UMS and also to extend the standard operating range of the ultrasonic sensor used. This article presents a novel approach to reduce measurement error using Levenberg–Marquardt backpropagation artificial neural network (LMBP-ANN) architecture. The proposed model is validated by comparing the actual water level at various depths under different environmental conditions with the output of the trained neural network. The measurement error in the proposed model is bounded by ±1 cm in the distance measurements ranging from 2 to 500 cm. This model is able to extend the maximum standard operating range of the ultrasonic sensor (HC-SR04 model) from 400 to 500 cm. The proposed model is evaluated using mean squared error (MSE) and [Formula Omitted]-values to establish the effectiveness. |
| Author | Sahoo, Ajit Kumar Udgata, Siba Kumar |
| Author_xml | – sequence: 1 givenname: Ajit Kumar surname: Sahoo fullname: Sahoo, Ajit Kumar email: ajit@uohyd.ac.in organization: School of Computer and Information Sciences, University of Hyderabad, Hyderabad, India – sequence: 2 givenname: Siba Kumar surname: Udgata fullname: Udgata, Siba Kumar email: udgata@uohyd.ac.in organization: School of Computer and Information Sciences, University of Hyderabad, Hyderabad, India |
| BookMark | eNp9kE1rAjEQhkOxULW9F3oJ9Lw2yWazm-NW-iGoPVTppRCycbas6MYmWcF_34jSQw-9zBxmnveFZ4B6rW0BoVtKRpQS-bCYzEaMUDliMpUyZReoT7MsT6QQrIf6hNAikTwTV2jg_ZoQkgue99Fnied2DxtczufJo_awwuVK70KzB7zcBKe9bRuDZ6B952ALbcDvBx9gi2vrcGlM53QA_BGHw1M4Js0iEaxr2q9rdFnrjYeb8x6i5fPTYvyaTN9eJuNymhgmaUi0loaKKqu0kbXUvJZ5CrzODa0zmWowQlIAbfKUG2o4j9dapAWvVlVmCGfpEN2fcnfOfnfgg1rbzrWxUjFOGJdCxqAhIqcv46z3Dmq1c81Wu4OiRB0dquhQHR2qs8OIiD-IaYIOjW2jmWbzH3h3AhsA-O0pCpZnokh_ALBsgO8 |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_3390_mi13040520 crossref_primary_10_1109_JSEN_2023_3340226 crossref_primary_10_1016_j_measurement_2022_111035 crossref_primary_10_3390_s24237699 crossref_primary_10_1007_s13369_024_09092_5 crossref_primary_10_1108_IR_07_2020_0148 crossref_primary_10_3390_mi16010061 crossref_primary_10_1109_JSEN_2021_3127127 crossref_primary_10_1007_s12065_020_00524_3 crossref_primary_10_1049_smt2_12203 crossref_primary_10_1109_TIM_2022_3214282 crossref_primary_10_1109_JSEN_2022_3223671 crossref_primary_10_1109_TASE_2025_3594752 crossref_primary_10_1002_tee_23968 crossref_primary_10_1007_s11581_025_06227_y crossref_primary_10_1177_01423312241285952 crossref_primary_10_1016_j_flowmeasinst_2022_102290 crossref_primary_10_3390_electronics14071393 crossref_primary_10_1155_2022_1425952 crossref_primary_10_1109_JSEN_2023_3324502 crossref_primary_10_1109_TIM_2021_3104375 crossref_primary_10_1109_TIM_2025_3554324 crossref_primary_10_3390_s24113404 crossref_primary_10_1016_j_flowmeasinst_2022_102295 crossref_primary_10_3390_s24072114 crossref_primary_10_3390_computation12020029 crossref_primary_10_1109_JSEN_2021_3081012 crossref_primary_10_1109_ACCESS_2023_3324548 crossref_primary_10_1016_j_flowmeasinst_2021_101940 crossref_primary_10_3390_w16172476 crossref_primary_10_1109_TIM_2024_3370780 crossref_primary_10_3390_s21061936 crossref_primary_10_1016_j_engappai_2023_107235 crossref_primary_10_1016_j_mechmachtheory_2021_104531 crossref_primary_10_3390_su14095512 crossref_primary_10_1007_s12040_023_02172_4 crossref_primary_10_1590_1807_1929_agriambi_v27n8p577_584 crossref_primary_10_1016_j_precisioneng_2025_01_025 crossref_primary_10_1109_TIM_2023_3246517 crossref_primary_10_1016_j_cherd_2024_08_005 crossref_primary_10_1007_s00542_024_05771_3 crossref_primary_10_3390_math10183233 crossref_primary_10_1016_j_measurement_2023_113404 crossref_primary_10_1007_s11042_023_15298_w crossref_primary_10_1109_TIA_2023_3299886 crossref_primary_10_1016_j_procs_2024_04_060 crossref_primary_10_1049_iet_smt_2020_0009 crossref_primary_10_1109_TIM_2025_3578177 crossref_primary_10_1109_TIE_2021_3114740 |
| Cites_doi | 10.1121/1.395521 10.1109/TIE.1982.356688 10.1016/j.measurement.2016.04.019 10.1016/0263-2241(94)00034-5 10.1016/j.sna.2010.05.005 10.1007/BF00821045 10.1109/ACCESS.2018.2843564 10.1016/0893-6080(91)90009-T 10.3390/s18093111 10.3390/s18010002 10.3390/s100807421 10.1080/02564602.2018.1471364 10.1109/19.126639 10.3390/s17040706 10.1121/1.405827 10.1177/0020294014546943 10.5643/9781606504413 10.1088/0957-0233/13/8/201 10.1109/JSEN.2001.936931 10.1109/19.85348 10.1007/BFb0067700 10.1109/IMTC.1993.382566 10.1109/JSEN.2016.2592359 10.1109/19.492808 10.1016/0893-6080(89)90020-8 10.3390/j2020016 10.1109/19.668262 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2019.2939932 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 3369 |
| ExternalDocumentID | 10_1109_TIM_2019_2939932 8827568 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: University Grant Commission (UGC), Government of India, through UGC NET JRF/SRF – fundername: DST-Intel-IUSSTF WAQM Project – fundername: Information Technology Research Academy (ITRA), Ministry of Electronics and Information Technology, Government of India funderid: 10.13039/501100008628 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-aa9c16b5bac9f9a4f973e4f7c1f593aec691eeac734c1c4473ef6384bdb5c0423 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546623300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:20:26 EDT 2025 Sat Nov 29 03:19:07 EST 2025 Tue Nov 18 21:15:22 EST 2025 Wed Aug 27 02:38:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-aa9c16b5bac9f9a4f973e4f7c1f593aec691eeac734c1c4473ef6384bdb5c0423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2402496959 |
| PQPubID | 85462 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2019_2939932 crossref_citationtrail_10_1109_TIM_2019_2939932 proquest_journals_2402496959 ieee_primary_8827568 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 (ref15) 2009 ref14 ref31 ref33 ref11 ref32 ref10 haykin (ref30) 1994 ref1 ref17 ref16 ref19 (ref28) 2008 ref18 schnake (ref2) 2006 (ref13) 2013 (ref36) 2017 ref24 ref26 ref25 coleman (ref29) 1999 ref22 devine (ref20) 2000 ref21 matsuya (ref23) 2018; 18 ref27 ref7 ref9 ref4 ref3 ref6 ref5 bohn (ref8) 1987; 36 |
| References_xml | – ident: ref7 doi: 10.1121/1.395521 – ident: ref10 doi: 10.1109/TIE.1982.356688 – ident: ref17 doi: 10.1016/j.measurement.2016.04.019 – ident: ref4 doi: 10.1016/0263-2241(94)00034-5 – year: 2009 ident: ref15 publication-title: Various Techn Liquids Solids Level Measurements – ident: ref11 doi: 10.1016/j.sna.2010.05.005 – ident: ref14 doi: 10.1007/BF00821045 – ident: ref35 doi: 10.1109/ACCESS.2018.2843564 – year: 1994 ident: ref30 publication-title: Neural Networks A Comprehensive Found – ident: ref32 doi: 10.1016/0893-6080(91)90009-T – ident: ref19 doi: 10.3390/s18093111 – year: 2008 ident: ref28 publication-title: JCGM 100 Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement (GUM) – year: 2000 ident: ref20 publication-title: Radar Level Measurement the user guide – volume: 18 start-page: 2 year: 2018 ident: ref23 article-title: Measuring liquid-level utilizing wedge wave publication-title: SENSORS doi: 10.3390/s18010002 – year: 1999 ident: ref29 publication-title: Experimentation validation and uncertainty analysis for engineers – ident: ref9 doi: 10.3390/s100807421 – ident: ref18 doi: 10.1080/02564602.2018.1471364 – ident: ref5 doi: 10.1109/19.126639 – year: 2013 ident: ref13 publication-title: The Engineer's Guide to Level Measurement – ident: ref24 doi: 10.3390/s17040706 – ident: ref26 doi: 10.1121/1.405827 – ident: ref16 doi: 10.1177/0020294014546943 – ident: ref1 doi: 10.5643/9781606504413 – ident: ref21 doi: 10.1088/0957-0233/13/8/201 – ident: ref3 doi: 10.1109/JSEN.2001.936931 – ident: ref6 doi: 10.1109/19.85348 – ident: ref33 doi: 10.1007/BFb0067700 – ident: ref27 doi: 10.1109/IMTC.1993.382566 – year: 2006 ident: ref2 publication-title: Liquid Level Measurement-Basics 101 – ident: ref12 doi: 10.1109/JSEN.2016.2592359 – ident: ref25 doi: 10.1109/19.492808 – ident: ref31 doi: 10.1016/0893-6080(89)90020-8 – ident: ref34 doi: 10.3390/j2020016 – ident: ref22 doi: 10.1109/19.668262 – year: 2017 ident: ref36 publication-title: Matlab – volume: 36 start-page: 223 year: 1987 ident: ref8 article-title: Environmental effects on the speed of sound publication-title: J Audio Eng Soc |
| SSID | ssj0007647 |
| Score | 2.5121846 |
| Snippet | Low-cost ultrasonic sensors are widely used for non-contact distance measurement problems. Speed of ultrasonic waves is greatly affected by environmental... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3359 |
| SubjectTerms | Acoustic noise Acoustics Adaptive systems Algorithms Artificial neural network (ANN) Artificial neural networks Back propagation Computer architecture Distance measurement Error analysis Error reduction Humidity Level measurement Neural networks Relative humidity Sensors Storage tanks temperature Temperature measurement Temperature sensors ultrasonic measurement system (UMS) ultrasonic sensor Ultrasonic variables measurement Water levels Water tanks |
| Title | A Novel ANN-Based Adaptive Ultrasonic Measurement System for Accurate Water Level Monitoring |
| URI | https://ieeexplore.ieee.org/document/8827568 https://www.proquest.com/docview/2402496959 |
| Volume | 69 |
| WOSCitedRecordID | wos000546623300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UFPTgoyrWF3vwIhibxybbOVZRFDR4UOxBCJt9gFDa0tfvd2eTVkURvIRAZpOQLzszOzP7DcCZUKF0qt8E1Aop4EpiUBqdBVYStYgMbYzWN5sQed7udvFpCS4We2GMMb74zFzSqc_l64GaUqis5bxBkWbtZVgWIqv2ai20rsh4xY8ZuQnsvIJ5SjLE1vP9I9Vw4aUzbc4cx99MkO-p8kMRe-tyu_W_99qGzdqLZJ0K9h1YMv0GbHzhFmzAmq_tVONdeOuwfDAzTjzPgytntTTraDkkPcdeepORHBM9Lnv8jBayisecOYeWdZSaEp0Ee3WHEXugIiNWaQJ60B683N48X98FdVOFQMUYTQIpUUVZmZZSoUXJLYrEcCtUZFNMpFEZRsZpY5FwFSnO3VXr5igvdZkqKqLZh5X-oG8OgJEAtk1ZlsYZeovtMEl0qlOu3U3iWDehNf_OhaoZx6nxRa_wK48QC4dMQcgUNTJNOF-MGFZsG3_I7hISC7kahCYcz6Es6uk4LiiFxDHDFA9_H3UE6zEtpH145RhWJqOpOYFVNZu8j0en_k_7AOqz0TU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60KurBt1ife_AiGJvHJukcqyiKbfBQ0YMQNvsAQVrp6_e7s0mrogheQiCzSciXnZmdmf0G4DSVvrCqX3vUCsnjUqBXaJV4RhC1iPBNiMY1m0izrPn8jA9zcD7bC6O1dsVn-oJOXS5f9eWYQmUN6w2mcdKchwXqnFXt1prp3TThJUNmYKew9QumSUkfG927DlVx4YU1btYgh9-MkOuq8kMVO_tys_6_N9uAtcqPZK0S-E2Y070tWP3CLrgFS666Uw634aXFsv5EW_Es8y6t3VKspcQ7aTr2-DYaiCER5LLOZ7yQlUzmzLq0rCXlmAgl2JM9DFibyoxYqQvoQTvweHPdvbr1qrYKngwxGHlCoAySIi6ERIOCG0wjzU0qAxNjJLRMMNBWH6cRl4Hk3F41dpbyQhWxpDKaXaj1-j29B4wEsKmLotDW1Bts-lGkYhVzZW8ShqoOjel3zmXFOU6tL95yt_bwMbfI5IRMXiFTh7PZiPeSb-MP2W1CYiZXgVCHwymUeTUhhzklkTgmGOP-76NOYPm222nn7bvs_gBWQlpWu2DLIdRGg7E-gkU5Gb0OB8fur_sA-hXUfg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+ANN-Based+Adaptive+Ultrasonic+Measurement+System+for+Accurate+Water+Level+Monitoring&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Sahoo%2C+Ajit+Kumar&rft.au=Udgata%2C+Siba+Kumar&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=69&rft.issue=6&rft.spage=3359&rft.epage=3369&rft_id=info:doi/10.1109%2FTIM.2019.2939932&rft.externalDocID=8827568 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |