AGA: An Accelerated Greedy Additional Algorithm for Test Case Prioritization
In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken the efficiency problem of these techniques into account. In this paper, we target the Greedy Additional (GA) algorithm, which has been widely...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on software engineering Jg. 48; H. 12; S. 5102 - 5119 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2022
IEEE Computer Society |
| Schlagworte: | |
| ISSN: | 0098-5589, 1939-3520 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken the efficiency problem of these techniques into account. In this paper, we target the Greedy Additional (GA) algorithm, which has been widely recognized to be effective but less efficient, and try to improve its efficiency while preserving effectiveness. In our Accelerated GA (AGA) algorithm, we use some extra data structures to reduce redundant data accesses in the GA algorithm and thus the time complexity is reduced from <inline-formula><tex-math notation="LaTeX">\mathcal {O}(m^2n)</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="script">O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>m</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq1-3137929.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">\mathcal {O}(kmn)</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="script">O</mml:mi><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mi>m</mml:mi><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq2-3137929.gif"/> </inline-formula> when <inline-formula><tex-math notation="LaTeX">n > m</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>></mml:mo><mml:mi>m</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq3-3137929.gif"/> </inline-formula>, where <inline-formula><tex-math notation="LaTeX">m</tex-math> <mml:math><mml:mi>m</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq4-3137929.gif"/> </inline-formula> is the number of test cases, <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq5-3137929.gif"/> </inline-formula> is the number of program elements, and <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq6-3137929.gif"/> </inline-formula> is the iteration number. Moreover, we observe the impact of iteration numbers on prioritization efficiency on our dataset and propose to use a specific iteration number in the AGA algorithm to further improve the efficiency. We conducted experiments on 55 open-source subjects. In particular, we implemented each TCP algorithm with two kinds of widely-used input formats, adjacency matrix and adjacency list. Since a TCP algorithm with adjacency matrix is less efficient than the algorithm with adjacency list, the result analysis is mainly conducted based on TCP algorithms with adjacency list. The results show that AGA achieves 5.95X speedup ratio over GA on average, while it achieves the same average effectiveness as GA in terms of Average Percentage of Fault Detected (APFD). Moreover, we conducted an industrial case study on 22 subjects, collected from Baidu, and find that the average speedup ratio of AGA over GA is 44.27X, which indicates the practical usage of AGA in real-world scenarios. |
|---|---|
| AbstractList | In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken the efficiency problem of these techniques into account. In this paper, we target the Greedy Additional (GA) algorithm, which has been widely recognized to be effective but less efficient, and try to improve its efficiency while preserving effectiveness. In our Accelerated GA (AGA) algorithm, we use some extra data structures to reduce redundant data accesses in the GA algorithm and thus the time complexity is reduced from <inline-formula><tex-math notation="LaTeX">\mathcal {O}(m^2n)</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="script">O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>m</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq1-3137929.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">\mathcal {O}(kmn)</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="script">O</mml:mi><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mi>m</mml:mi><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq2-3137929.gif"/> </inline-formula> when <inline-formula><tex-math notation="LaTeX">n > m</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>></mml:mo><mml:mi>m</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq3-3137929.gif"/> </inline-formula>, where <inline-formula><tex-math notation="LaTeX">m</tex-math> <mml:math><mml:mi>m</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq4-3137929.gif"/> </inline-formula> is the number of test cases, <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq5-3137929.gif"/> </inline-formula> is the number of program elements, and <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq6-3137929.gif"/> </inline-formula> is the iteration number. Moreover, we observe the impact of iteration numbers on prioritization efficiency on our dataset and propose to use a specific iteration number in the AGA algorithm to further improve the efficiency. We conducted experiments on 55 open-source subjects. In particular, we implemented each TCP algorithm with two kinds of widely-used input formats, adjacency matrix and adjacency list. Since a TCP algorithm with adjacency matrix is less efficient than the algorithm with adjacency list, the result analysis is mainly conducted based on TCP algorithms with adjacency list. The results show that AGA achieves 5.95X speedup ratio over GA on average, while it achieves the same average effectiveness as GA in terms of Average Percentage of Fault Detected (APFD). Moreover, we conducted an industrial case study on 22 subjects, collected from Baidu, and find that the average speedup ratio of AGA over GA is 44.27X, which indicates the practical usage of AGA in real-world scenarios. In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken the efficiency problem of these techniques into account. In this paper, we target the Greedy Additional (GA) algorithm, which has been widely recognized to be effective but less efficient, and try to improve its efficiency while preserving effectiveness. In our Accelerated GA (AGA) algorithm, we use some extra data structures to reduce redundant data accesses in the GA algorithm and thus the time complexity is reduced from [Formula Omitted] to [Formula Omitted] when [Formula Omitted], where [Formula Omitted] is the number of test cases, [Formula Omitted] is the number of program elements, and [Formula Omitted] is the iteration number. Moreover, we observe the impact of iteration numbers on prioritization efficiency on our dataset and propose to use a specific iteration number in the AGA algorithm to further improve the efficiency. We conducted experiments on 55 open-source subjects. In particular, we implemented each TCP algorithm with two kinds of widely-used input formats, adjacency matrix and adjacency list. Since a TCP algorithm with adjacency matrix is less efficient than the algorithm with adjacency list, the result analysis is mainly conducted based on TCP algorithms with adjacency list. The results show that AGA achieves 5.95X speedup ratio over GA on average, while it achieves the same average effectiveness as GA in terms of Average Percentage of Fault Detected (APFD). Moreover, we conducted an industrial case study on 22 subjects, collected from Baidu, and find that the average speedup ratio of AGA over GA is 44.27X, which indicates the practical usage of AGA in real-world scenarios. |
| Author | Li, Feng Hao, Dan Zhang, Lu Zhou, Jianyi Li, Yinzhu |
| Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0002-2746-4951 surname: Li fullname: Li, Feng email: lifeng2014@pku.edu.cn organization: Institute of Software, School of Computer Science, Peking University, Beijing, China – sequence: 2 givenname: Jianyi surname: Zhou fullname: Zhou, Jianyi email: zhoujianyi@pku.edu.cn organization: Institute of Software, School of Computer Science, Peking University, Beijing, China – sequence: 3 givenname: Yinzhu surname: Li fullname: Li, Yinzhu email: liyinzhu@baidu.com organization: Baidu Online Network Technology (Beijing) Company, Ltd, Beijing, China – sequence: 4 givenname: Dan orcidid: 0000-0001-8295-303X surname: Hao fullname: Hao, Dan email: haodan@pku.edu.cn organization: Institute of Software, School of Computer Science, Peking University, Beijing, China – sequence: 5 givenname: Lu surname: Zhang fullname: Zhang, Lu email: zhanglucs@pku.edu.cn organization: Institute of Software, School of Computer Science, Peking University, Beijing, China |
| BookMark | eNp9kMFLwzAYR4NMcJveBS8Bz51fkiZtvJUxpzBQcJ5DmqSa0bUz6Q7zr7d1w4MHT4Hw3sePN0Gjpm0cQtcEZoSAvFu_LmYUKJkxwjJJ5RkaE8lkwjiFERoDyDzhPJcXaBLjBgB4lvExWhXL4h4XDS6McbULunMWL4Nz9oALa33n20bXuKjf2-C7jy2u2oDXLnZ4rqPDL8EP__5LD-AlOq90Hd3V6Z2it4fFev6YrJ6XT_NilRgqSZdonYuSpSYF66qSGWYkWGotL2nJOdc5h0oLy5mUUhimK8ghK10JRgtSZiWbotvj3V1oP_f9GLVp96HfGRXN0pyLlAjaU-JImdDGGFyljO9-dnZB-1oRUEM51ZdTQzl1KteL8EfcBb_V4fCfcnNUvHPuF5dCUMoE-wYQp3qM |
| CODEN | IESEDJ |
| CitedBy_id | crossref_primary_10_1145_3579851 crossref_primary_10_1002_smr_2708 crossref_primary_10_1007_s11390_024_2967_1 crossref_primary_10_1016_j_jss_2022_111419 crossref_primary_10_1109_TSE_2025_3581556 |
| Cites_doi | 10.1145/2491411.2491436 10.1109/32.962562 10.1145/3236024.3236053 10.1109/32.988497 10.1109/ICSM.1999.792604 10.1145/3092703.3092717 10.1111/j.2517-6161.1980.tb01109.x 10.1145/2950290.2950344 10.1145/1390630.1390641 10.1145/3293882.3330574 10.1145/2635868.2635929 10.1109/TSE.2018.2822270 10.1109/ISSRE.2015.7381799 10.1109/ICSM.2005.87 10.1007/978-3-030-03673-7_18 10.1145/1453101.1453113 10.1109/TSE.2011.106 10.1145/1572272.1572296 10.1145/2610384.2628055 10.1214/aoms/1177730491 10.1145/2884781.2884874 10.1109/TSE.2018.2868082 10.1145/1353673.1353677 10.1109/ISSRE.2015.7381798 10.1109/TSE.2015.2496939 10.1109/ASE.2009.77 10.1109/ICST.2013.12 10.1145/2771783.2771788 10.1109/TSE.2006.92 10.1002/stv.430 10.1145/3092703.3092731 10.1109/TSE.2007.38 10.1002/stvr.1695 10.1109/ICSM.2009.5306350 10.1109/ISSRE.2014.40 10.1145/1526709.1526830 10.1145/3180155.3180210 10.2307/2333709 10.1145/3106237.3106258 10.1109/APSEC.2008.63 10.1109/TSE.2003.1183927 10.1145/2635868.2635910 10.1109/ISSRE.1997.630875 10.1002/j.1538-7305.1965.tb04146.x 10.1145/2884781.2884791 10.4324/9780203771587 10.1007/s11704-016-6112-3 10.1109/ISSREW.2018.00014 10.1145/3133916 10.1109/ICST.2014.11 10.1109/ICSE.2015.47 10.1145/1062455.1062530 10.1109/ICSME.2018.00033 10.1145/3194733.3194735 10.1109/ICSE.2017.62 10.1007/s11219-012-9181-z 10.1109/ICSE.2013.6606565 10.1109/TSE.2010.58 10.1145/226295.226313 10.1109/RCoSE.2015.11 10.1007/s10664-014-9338-4 10.1016/j.jss.2017.09.031 10.1109/TSE.2003.1245299 10.1145/347324.348910 10.2307/3001913 10.1109/ICSE-SEIP.2017.16 10.1109/ICSE.2001.919106 10.1007/978-1-4612-4380-9_6 10.1109/ICSM.2013.91 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2022 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2022 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
| DOI | 10.1109/TSE.2021.3137929 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1939-3520 |
| EndPage | 5119 |
| ExternalDocumentID | 10_1109_TSE_2021_3137929 9662236 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61872008 funderid: 10.13039/501100001809 |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 8R4 8R5 97E AAJGR AARMG AASAJ AAWTH ABAZT ABPPZ ABQJQ ABVLG ACGFO ACGOD ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS EDO EJD HZ~ I-F IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P Q2X RIA RIE RNS RXW S10 TAE TN5 TWZ UHB UPT WH7 YZZ .4S 3EH 5VS 7WY 7X7 88E 88I 8FE 8FG 8FI 8FJ 8FL 8G5 9M8 AAYXX ABFSI ABJCF ABUWG ADBBV AETIX AFFHD AFKRA AGSQL AI. AIBXA ALLEH ARAPS ARCSS AZQEC BENPR BEZIV BGLVJ BPHCQ BVXVI CCPQU CITATION DWQXO E.L FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HMCUK H~9 IBMZZ ICLAB IFJZH ITG ITH K60 K6V K6~ K7- L6V M0C M1P M1Q M2O M2P M7S OHT P62 PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PSQYO PTHSS RNI RZB UKHRP UQL VH1 XOL YYP ZCG JQ2 K9. |
| ID | FETCH-LOGICAL-c291t-aa86b34c40defb3c3c90d2dd5b2b555a850fa6d539996c3af0807beb0ca61b7b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896667600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-5589 |
| IngestDate | Fri Oct 03 04:31:10 EDT 2025 Sat Nov 29 03:10:27 EST 2025 Tue Nov 18 20:38:46 EST 2025 Wed Aug 27 02:14:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-aa86b34c40defb3c3c90d2dd5b2b555a850fa6d539996c3af0807beb0ca61b7b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8295-303X 0000-0002-2746-4951 |
| PQID | 2748564162 |
| PQPubID | 21418 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSE_2021_3137929 ieee_primary_9662236 crossref_primary_10_1109_TSE_2021_3137929 proquest_journals_2748564162 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on software engineering |
| PublicationTitleAbbrev | TSE |
| PublicationYear | 2022 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref13 ref12 ref15 ref58 ref14 ref53 ref52 ref54 ref10 ref17 ref19 cormen (ref11) 2009 ref18 bartlett (ref42) 1937; 160 ref51 ref50 baker (ref55) 1985 ref45 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 (ref56) 2021 ref5 ref82 ref81 ref40 fraser (ref59) 2007 (ref33) 2021 mohanty (ref77) 2011; 2 ref80 ref79 ref35 do (ref26) 2006; 32 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref76 ref2 ref1 ref39 ref38 hasan (ref46) 2017 ref71 ref70 ref73 ref72 do (ref64) 2004 zhou (ref21) 2021; 31 ref68 ref24 ref67 ref23 kumar (ref16) 2010 ref69 ref25 ref20 (ref32) 2021 ref63 ref66 ref22 ref65 ref28 ref27 ref29 papadakis (ref57) 2018 ref60 ref62 ref61 |
| References_xml | – ident: ref37 doi: 10.1145/2491411.2491436 – ident: ref1 doi: 10.1109/32.962562 – ident: ref22 doi: 10.1145/3236024.3236053 – ident: ref3 doi: 10.1109/32.988497 – ident: ref5 doi: 10.1109/ICSM.1999.792604 – ident: ref52 doi: 10.1145/3092703.3092717 – ident: ref40 doi: 10.1111/j.2517-6161.1980.tb01109.x – ident: ref31 doi: 10.1145/2950290.2950344 – ident: ref4 doi: 10.1145/1390630.1390641 – ident: ref49 doi: 10.1145/3293882.3330574 – ident: ref24 doi: 10.1145/2635868.2635929 – ident: ref20 doi: 10.1109/TSE.2018.2822270 – ident: ref47 doi: 10.1109/ISSRE.2015.7381799 – ident: ref67 doi: 10.1109/ICSM.2005.87 – ident: ref48 doi: 10.1007/978-3-030-03673-7_18 – ident: ref71 doi: 10.1145/1453101.1453113 – ident: ref28 doi: 10.1109/TSE.2011.106 – ident: ref60 doi: 10.1145/1572272.1572296 – ident: ref44 doi: 10.1145/2610384.2628055 – volume: 160 start-page: 268 year: 1937 ident: ref42 article-title: Properties of sufficiency and statistical tests publication-title: Proc Roy Soc London Ser A- Math Phys Sci – ident: ref39 doi: 10.1214/aoms/1177730491 – year: 2021 ident: ref56 – ident: ref17 doi: 10.1145/2884781.2884874 – ident: ref78 doi: 10.1109/TSE.2018.2868082 – ident: ref69 doi: 10.1145/1353673.1353677 – ident: ref27 doi: 10.1109/ISSRE.2015.7381798 – ident: ref74 doi: 10.1109/TSE.2015.2496939 – start-page: 537 year: 2018 ident: ref57 article-title: Are mutation scores correlated with real fault detection? A large scale empirical study on the relationship between mutants and real faults publication-title: Proc IEEE/ACM Int Conf Softw Eng – ident: ref10 doi: 10.1109/ASE.2009.77 – ident: ref29 doi: 10.1109/ICST.2013.12 – ident: ref73 doi: 10.1145/2771783.2771788 – volume: 32 start-page: 733 year: 2006 ident: ref26 article-title: On the use of mutation faults in empirical assessments of test case prioritization techniques publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2006.92 – year: 2010 ident: ref16 article-title: Development at the speed and scale of google publication-title: Proc Int Softw Dev Conf – ident: ref75 doi: 10.1002/stv.430 – ident: ref53 doi: 10.1145/3092703.3092731 – ident: ref8 doi: 10.1109/TSE.2007.38 – ident: ref70 doi: 10.1002/stvr.1695 – ident: ref66 doi: 10.1109/ICSM.2009.5306350 – ident: ref34 doi: 10.1109/ISSRE.2014.40 – start-page: 267 year: 2007 ident: ref59 article-title: Test-case prioritization with model-checkers publication-title: Proc IASTED Int Conf Web-Based Education – ident: ref68 doi: 10.1145/1526709.1526830 – start-page: 101 year: 1985 ident: ref55 article-title: Adaptive selection methods for genetic algorithms publication-title: Proc Intl Conf on Genetic Algorithms – ident: ref18 doi: 10.1145/3180155.3180210 – ident: ref38 doi: 10.2307/2333709 – ident: ref23 doi: 10.1145/3106237.3106258 – ident: ref62 doi: 10.1109/APSEC.2008.63 – ident: ref65 doi: 10.1109/TSE.2003.1183927 – ident: ref13 doi: 10.1145/2635868.2635910 – ident: ref6 doi: 10.1109/ISSRE.1997.630875 – ident: ref9 doi: 10.1002/j.1538-7305.1965.tb04146.x – year: 2021 ident: ref32 – ident: ref12 doi: 10.1145/2884781.2884791 – ident: ref41 doi: 10.4324/9780203771587 – ident: ref72 doi: 10.1007/s11704-016-6112-3 – ident: ref79 doi: 10.1109/ISSREW.2018.00014 – ident: ref50 doi: 10.1145/3133916 – ident: ref36 doi: 10.1109/ICST.2014.11 – ident: ref61 doi: 10.1109/ICSE.2015.47 – ident: ref25 doi: 10.1145/1062455.1062530 – start-page: 269 year: 2017 ident: ref46 article-title: Test case prioritization based on dissimilarity clustering using historical data analysis publication-title: Proc Int Conf Inf Commun Comput Technol – ident: ref35 doi: 10.1109/ICSME.2018.00033 – ident: ref45 doi: 10.1145/3194733.3194735 – start-page: 113 year: 2004 ident: ref64 article-title: Empirical studies of test case prioritization in a JUnit testing environment publication-title: Proc 8th Int Symp Softw Rel Eng – ident: ref51 doi: 10.1109/ICSE.2017.62 – ident: ref76 doi: 10.1007/s11219-012-9181-z – ident: ref7 doi: 10.1109/ICSE.2013.6606565 – ident: ref30 doi: 10.1109/TSE.2010.58 – ident: ref58 doi: 10.1145/226295.226313 – ident: ref82 doi: 10.1109/RCoSE.2015.11 – ident: ref14 doi: 10.1007/s10664-014-9338-4 – ident: ref80 doi: 10.1016/j.jss.2017.09.031 – ident: ref54 doi: 10.1109/TSE.2003.1245299 – ident: ref63 doi: 10.1145/347324.348910 – ident: ref43 doi: 10.2307/3001913 – volume: 31 start-page: 1 year: 2021 ident: ref21 article-title: Parallel test prioritization publication-title: ACM Trans Softw Eng Methodol – year: 2009 ident: ref11 publication-title: Introduction to Algorithms – ident: ref15 doi: 10.1109/ICSE-SEIP.2017.16 – volume: 2 start-page: 1042 year: 2011 ident: ref77 article-title: A survey on model based test case prioritization publication-title: Int J Comput Sci Inf Technol – ident: ref2 doi: 10.1109/ICSE.2001.919106 – ident: ref19 doi: 10.1007/978-1-4612-4380-9_6 – year: 2021 ident: ref33 – ident: ref81 doi: 10.1109/ICSM.2013.91 |
| SSID | ssj0005775 ssib053395008 |
| Score | 2.4696968 |
| Snippet | In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5102 |
| SubjectTerms | acceleration additional strategy Algorithms Codes Data structures Effectiveness Efficiency Fault detection Genetic algorithms Greedy algorithms Iterative methods Software algorithms Software engineering Test case prioritization Testing Time complexity Web and internet services |
| Title | AGA: An Accelerated Greedy Additional Algorithm for Test Case Prioritization |
| URI | https://ieeexplore.ieee.org/document/9662236 https://www.proquest.com/docview/2748564162 |
| Volume | 48 |
| WOSCitedRecordID | wos000896667600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1939-3520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005775 issn: 0098-5589 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGLVatYrZKDF8G1-8pm420prR6kFKzQ27J5aaG20ofgv3eyj_agCN6WJYEwk8l8XzIPgOs4FJJnoXGiUGgnlEw6IvCVY5Ay45npKaqKZhNsOIwnEz6qwe02F0ZrnQef6Tv7mb_lq4Xc2KuyLkJz9GZRHeqMsSJXaxfOwRit6mNSGvPqSdLl3fFzH4mg7yE_DRjPweTOBeU9VX4cxLl3GTT_t65DOChRJEkKtR9BTc-PoVl1aCClwbbgKXlI7kkyJ4mU6F9sWQhFbKiN-iKJUtPiIpAks9fFcrp-eycIYckY10d66N3IaDm1_8tUzRN4GfTHvUen7J_gSJ97ayfL4kgEoQxdpY0IZCC5q3ylqPAFpTSLqWuySNnatDySQWYQPTKhhSuzyBNMBKfQmC_m-gyINBR5madVhHARUURmjEFz1orG2tMxb0O3Emkqy-LitsfFLM1JhstTVEJqlZCWSmjDzXbGR1FY44-xLSv07bhS3m3oVFpLS8tbpciyYxohzPTPf591Afu-TWHIQ1I60FgvN_oS9uTnerpaXuWb6hv-Eslt |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH7UBfTiVsW6zsGLYGy2STLeQqlWrKVghN5CZtOCthKr4L_3TZb2oAjeQpiB4b15875v5i0AZ5HPBct8bQU-V5YvQmFxz5WWRsqMZ6YjqSybTYSDQTQasWEDLua5MEqpIvhMXZrP4i1fTsWHuSprIzRHbxYswQr1fdcps7UWAR1hSOsKmZRGrH6UtFk7eegiFXQdZKheyAo4uXBCRVeVH0dx4V-uN_-3si3YqHAkiUvFb0NDTXZgs-7RQCqTbUI_vomvSDwhsRDoYUxhCElMsI38IrGU4_IqkMQvT9N8PHt-JQhiSYLrIx30b2SYj83_KllzFx6vu0mnZ1UdFCzhMmdmZVkUcM8Xvi2V5p7wBLOlKyXlLqeUZhG1dRZIU52WBcLLNOLHkCtuiyxweMi9PVieTCdqH4jQFJmZo2SAgBFxRKa1RoNWkkbKURFrQbsWaSqq8uKmy8VLWtAMm6WohNQoIa2U0ILz-Yy3srTGH2ObRujzcZW8W3BUay2tbO89RZ4d0QCBpnvw-6xTWOsl9_20fzu4O4R11yQ0FAEqR7A8yz_UMayKz9n4PT8pNtg3o3TMtA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AGA%3A+An+Accelerated+Greedy+Additional+Algorithm+for+Test+Case+Prioritization&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Li%2C+Feng&rft.au=Zhou%2C+Jianyi&rft.au=Li%2C+Yinzhu&rft.au=Hao%2C+Dan&rft.date=2022-12-01&rft.pub=IEEE+Computer+Society&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=48&rft.issue=12&rft.spage=5102&rft_id=info:doi/10.1109%2FTSE.2021.3137929&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |