AGA: An Accelerated Greedy Additional Algorithm for Test Case Prioritization

In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken the efficiency problem of these techniques into account. In this paper, we target the Greedy Additional (GA) algorithm, which has been widely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering Jg. 48; H. 12; S. 5102 - 5119
Hauptverfasser: Li, Feng, Zhou, Jianyi, Li, Yinzhu, Hao, Dan, Zhang, Lu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2022
IEEE Computer Society
Schlagworte:
ISSN:0098-5589, 1939-3520
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken the efficiency problem of these techniques into account. In this paper, we target the Greedy Additional (GA) algorithm, which has been widely recognized to be effective but less efficient, and try to improve its efficiency while preserving effectiveness. In our Accelerated GA (AGA) algorithm, we use some extra data structures to reduce redundant data accesses in the GA algorithm and thus the time complexity is reduced from <inline-formula><tex-math notation="LaTeX">\mathcal {O}(m^2n)</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="script">O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>m</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq1-3137929.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">\mathcal {O}(kmn)</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="script">O</mml:mi><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mi>m</mml:mi><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq2-3137929.gif"/> </inline-formula> when <inline-formula><tex-math notation="LaTeX">n > m</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>></mml:mo><mml:mi>m</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq3-3137929.gif"/> </inline-formula>, where <inline-formula><tex-math notation="LaTeX">m</tex-math> <mml:math><mml:mi>m</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq4-3137929.gif"/> </inline-formula> is the number of test cases, <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq5-3137929.gif"/> </inline-formula> is the number of program elements, and <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq6-3137929.gif"/> </inline-formula> is the iteration number. Moreover, we observe the impact of iteration numbers on prioritization efficiency on our dataset and propose to use a specific iteration number in the AGA algorithm to further improve the efficiency. We conducted experiments on 55 open-source subjects. In particular, we implemented each TCP algorithm with two kinds of widely-used input formats, adjacency matrix and adjacency list. Since a TCP algorithm with adjacency matrix is less efficient than the algorithm with adjacency list, the result analysis is mainly conducted based on TCP algorithms with adjacency list. The results show that AGA achieves 5.95X speedup ratio over GA on average, while it achieves the same average effectiveness as GA in terms of Average Percentage of Fault Detected (APFD). Moreover, we conducted an industrial case study on 22 subjects, collected from Baidu, and find that the average speedup ratio of AGA over GA is 44.27X, which indicates the practical usage of AGA in real-world scenarios.
AbstractList In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken the efficiency problem of these techniques into account. In this paper, we target the Greedy Additional (GA) algorithm, which has been widely recognized to be effective but less efficient, and try to improve its efficiency while preserving effectiveness. In our Accelerated GA (AGA) algorithm, we use some extra data structures to reduce redundant data accesses in the GA algorithm and thus the time complexity is reduced from <inline-formula><tex-math notation="LaTeX">\mathcal {O}(m^2n)</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="script">O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>m</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq1-3137929.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">\mathcal {O}(kmn)</tex-math> <mml:math><mml:mrow><mml:mi mathvariant="script">O</mml:mi><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mi>m</mml:mi><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq2-3137929.gif"/> </inline-formula> when <inline-formula><tex-math notation="LaTeX">n > m</tex-math> <mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>></mml:mo><mml:mi>m</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq3-3137929.gif"/> </inline-formula>, where <inline-formula><tex-math notation="LaTeX">m</tex-math> <mml:math><mml:mi>m</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq4-3137929.gif"/> </inline-formula> is the number of test cases, <inline-formula><tex-math notation="LaTeX">n</tex-math> <mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq5-3137929.gif"/> </inline-formula> is the number of program elements, and <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq6-3137929.gif"/> </inline-formula> is the iteration number. Moreover, we observe the impact of iteration numbers on prioritization efficiency on our dataset and propose to use a specific iteration number in the AGA algorithm to further improve the efficiency. We conducted experiments on 55 open-source subjects. In particular, we implemented each TCP algorithm with two kinds of widely-used input formats, adjacency matrix and adjacency list. Since a TCP algorithm with adjacency matrix is less efficient than the algorithm with adjacency list, the result analysis is mainly conducted based on TCP algorithms with adjacency list. The results show that AGA achieves 5.95X speedup ratio over GA on average, while it achieves the same average effectiveness as GA in terms of Average Percentage of Fault Detected (APFD). Moreover, we conducted an industrial case study on 22 subjects, collected from Baidu, and find that the average speedup ratio of AGA over GA is 44.27X, which indicates the practical usage of AGA in real-world scenarios.
In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken the efficiency problem of these techniques into account. In this paper, we target the Greedy Additional (GA) algorithm, which has been widely recognized to be effective but less efficient, and try to improve its efficiency while preserving effectiveness. In our Accelerated GA (AGA) algorithm, we use some extra data structures to reduce redundant data accesses in the GA algorithm and thus the time complexity is reduced from [Formula Omitted] to [Formula Omitted] when [Formula Omitted], where [Formula Omitted] is the number of test cases, [Formula Omitted] is the number of program elements, and [Formula Omitted] is the iteration number. Moreover, we observe the impact of iteration numbers on prioritization efficiency on our dataset and propose to use a specific iteration number in the AGA algorithm to further improve the efficiency. We conducted experiments on 55 open-source subjects. In particular, we implemented each TCP algorithm with two kinds of widely-used input formats, adjacency matrix and adjacency list. Since a TCP algorithm with adjacency matrix is less efficient than the algorithm with adjacency list, the result analysis is mainly conducted based on TCP algorithms with adjacency list. The results show that AGA achieves 5.95X speedup ratio over GA on average, while it achieves the same average effectiveness as GA in terms of Average Percentage of Fault Detected (APFD). Moreover, we conducted an industrial case study on 22 subjects, collected from Baidu, and find that the average speedup ratio of AGA over GA is 44.27X, which indicates the practical usage of AGA in real-world scenarios.
Author Li, Feng
Hao, Dan
Zhang, Lu
Zhou, Jianyi
Li, Yinzhu
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-2746-4951
  surname: Li
  fullname: Li, Feng
  email: lifeng2014@pku.edu.cn
  organization: Institute of Software, School of Computer Science, Peking University, Beijing, China
– sequence: 2
  givenname: Jianyi
  surname: Zhou
  fullname: Zhou, Jianyi
  email: zhoujianyi@pku.edu.cn
  organization: Institute of Software, School of Computer Science, Peking University, Beijing, China
– sequence: 3
  givenname: Yinzhu
  surname: Li
  fullname: Li, Yinzhu
  email: liyinzhu@baidu.com
  organization: Baidu Online Network Technology (Beijing) Company, Ltd, Beijing, China
– sequence: 4
  givenname: Dan
  orcidid: 0000-0001-8295-303X
  surname: Hao
  fullname: Hao, Dan
  email: haodan@pku.edu.cn
  organization: Institute of Software, School of Computer Science, Peking University, Beijing, China
– sequence: 5
  givenname: Lu
  surname: Zhang
  fullname: Zhang, Lu
  email: zhanglucs@pku.edu.cn
  organization: Institute of Software, School of Computer Science, Peking University, Beijing, China
BookMark eNp9kMFLwzAYR4NMcJveBS8Bz51fkiZtvJUxpzBQcJ5DmqSa0bUz6Q7zr7d1w4MHT4Hw3sePN0Gjpm0cQtcEZoSAvFu_LmYUKJkxwjJJ5RkaE8lkwjiFERoDyDzhPJcXaBLjBgB4lvExWhXL4h4XDS6McbULunMWL4Nz9oALa33n20bXuKjf2-C7jy2u2oDXLnZ4rqPDL8EP__5LD-AlOq90Hd3V6Z2it4fFev6YrJ6XT_NilRgqSZdonYuSpSYF66qSGWYkWGotL2nJOdc5h0oLy5mUUhimK8ghK10JRgtSZiWbotvj3V1oP_f9GLVp96HfGRXN0pyLlAjaU-JImdDGGFyljO9-dnZB-1oRUEM51ZdTQzl1KteL8EfcBb_V4fCfcnNUvHPuF5dCUMoE-wYQp3qM
CODEN IESEDJ
CitedBy_id crossref_primary_10_1145_3579851
crossref_primary_10_1002_smr_2708
crossref_primary_10_1007_s11390_024_2967_1
crossref_primary_10_1016_j_jss_2022_111419
crossref_primary_10_1109_TSE_2025_3581556
Cites_doi 10.1145/2491411.2491436
10.1109/32.962562
10.1145/3236024.3236053
10.1109/32.988497
10.1109/ICSM.1999.792604
10.1145/3092703.3092717
10.1111/j.2517-6161.1980.tb01109.x
10.1145/2950290.2950344
10.1145/1390630.1390641
10.1145/3293882.3330574
10.1145/2635868.2635929
10.1109/TSE.2018.2822270
10.1109/ISSRE.2015.7381799
10.1109/ICSM.2005.87
10.1007/978-3-030-03673-7_18
10.1145/1453101.1453113
10.1109/TSE.2011.106
10.1145/1572272.1572296
10.1145/2610384.2628055
10.1214/aoms/1177730491
10.1145/2884781.2884874
10.1109/TSE.2018.2868082
10.1145/1353673.1353677
10.1109/ISSRE.2015.7381798
10.1109/TSE.2015.2496939
10.1109/ASE.2009.77
10.1109/ICST.2013.12
10.1145/2771783.2771788
10.1109/TSE.2006.92
10.1002/stv.430
10.1145/3092703.3092731
10.1109/TSE.2007.38
10.1002/stvr.1695
10.1109/ICSM.2009.5306350
10.1109/ISSRE.2014.40
10.1145/1526709.1526830
10.1145/3180155.3180210
10.2307/2333709
10.1145/3106237.3106258
10.1109/APSEC.2008.63
10.1109/TSE.2003.1183927
10.1145/2635868.2635910
10.1109/ISSRE.1997.630875
10.1002/j.1538-7305.1965.tb04146.x
10.1145/2884781.2884791
10.4324/9780203771587
10.1007/s11704-016-6112-3
10.1109/ISSREW.2018.00014
10.1145/3133916
10.1109/ICST.2014.11
10.1109/ICSE.2015.47
10.1145/1062455.1062530
10.1109/ICSME.2018.00033
10.1145/3194733.3194735
10.1109/ICSE.2017.62
10.1007/s11219-012-9181-z
10.1109/ICSE.2013.6606565
10.1109/TSE.2010.58
10.1145/226295.226313
10.1109/RCoSE.2015.11
10.1007/s10664-014-9338-4
10.1016/j.jss.2017.09.031
10.1109/TSE.2003.1245299
10.1145/347324.348910
10.2307/3001913
10.1109/ICSE-SEIP.2017.16
10.1109/ICSE.2001.919106
10.1007/978-1-4612-4380-9_6
10.1109/ICSM.2013.91
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2022
Copyright_xml – notice: Copyright IEEE Computer Society 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
K9.
DOI 10.1109/TSE.2021.3137929
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 5119
ExternalDocumentID 10_1109_TSE_2021_3137929
9662236
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61872008
  funderid: 10.13039/501100001809
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EDO
EJD
HZ~
I-F
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
Q2X
RIA
RIE
RNS
RXW
S10
TAE
TN5
TWZ
UHB
UPT
WH7
YZZ
.4S
3EH
5VS
7WY
7X7
88E
88I
8FE
8FG
8FI
8FJ
8FL
8G5
9M8
AAYXX
ABFSI
ABJCF
ABUWG
ADBBV
AETIX
AFFHD
AFKRA
AGSQL
AI.
AIBXA
ALLEH
ARAPS
ARCSS
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HMCUK
H~9
IBMZZ
ICLAB
IFJZH
ITG
ITH
K60
K6V
K6~
K7-
L6V
M0C
M1P
M1Q
M2O
M2P
M7S
OHT
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
RNI
RZB
UKHRP
UQL
VH1
XOL
YYP
ZCG
JQ2
K9.
ID FETCH-LOGICAL-c291t-aa86b34c40defb3c3c90d2dd5b2b555a850fa6d539996c3af0807beb0ca61b7b3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896667600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-5589
IngestDate Fri Oct 03 04:31:10 EDT 2025
Sat Nov 29 03:10:27 EST 2025
Tue Nov 18 20:38:46 EST 2025
Wed Aug 27 02:14:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-aa86b34c40defb3c3c90d2dd5b2b555a850fa6d539996c3af0807beb0ca61b7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8295-303X
0000-0002-2746-4951
PQID 2748564162
PQPubID 21418
PageCount 18
ParticipantIDs crossref_citationtrail_10_1109_TSE_2021_3137929
ieee_primary_9662236
crossref_primary_10_1109_TSE_2021_3137929
proquest_journals_2748564162
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2022
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref13
ref12
ref15
ref58
ref14
ref53
ref52
ref54
ref10
ref17
ref19
cormen (ref11) 2009
ref18
bartlett (ref42) 1937; 160
ref51
ref50
baker (ref55) 1985
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
(ref56) 2021
ref5
ref82
ref81
ref40
fraser (ref59) 2007
(ref33) 2021
mohanty (ref77) 2011; 2
ref80
ref79
ref35
do (ref26) 2006; 32
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref76
ref2
ref1
ref39
ref38
hasan (ref46) 2017
ref71
ref70
ref73
ref72
do (ref64) 2004
zhou (ref21) 2021; 31
ref68
ref24
ref67
ref23
kumar (ref16) 2010
ref69
ref25
ref20
(ref32) 2021
ref63
ref66
ref22
ref65
ref28
ref27
ref29
papadakis (ref57) 2018
ref60
ref62
ref61
References_xml – ident: ref37
  doi: 10.1145/2491411.2491436
– ident: ref1
  doi: 10.1109/32.962562
– ident: ref22
  doi: 10.1145/3236024.3236053
– ident: ref3
  doi: 10.1109/32.988497
– ident: ref5
  doi: 10.1109/ICSM.1999.792604
– ident: ref52
  doi: 10.1145/3092703.3092717
– ident: ref40
  doi: 10.1111/j.2517-6161.1980.tb01109.x
– ident: ref31
  doi: 10.1145/2950290.2950344
– ident: ref4
  doi: 10.1145/1390630.1390641
– ident: ref49
  doi: 10.1145/3293882.3330574
– ident: ref24
  doi: 10.1145/2635868.2635929
– ident: ref20
  doi: 10.1109/TSE.2018.2822270
– ident: ref47
  doi: 10.1109/ISSRE.2015.7381799
– ident: ref67
  doi: 10.1109/ICSM.2005.87
– ident: ref48
  doi: 10.1007/978-3-030-03673-7_18
– ident: ref71
  doi: 10.1145/1453101.1453113
– ident: ref28
  doi: 10.1109/TSE.2011.106
– ident: ref60
  doi: 10.1145/1572272.1572296
– ident: ref44
  doi: 10.1145/2610384.2628055
– volume: 160
  start-page: 268
  year: 1937
  ident: ref42
  article-title: Properties of sufficiency and statistical tests
  publication-title: Proc Roy Soc London Ser A- Math Phys Sci
– ident: ref39
  doi: 10.1214/aoms/1177730491
– year: 2021
  ident: ref56
– ident: ref17
  doi: 10.1145/2884781.2884874
– ident: ref78
  doi: 10.1109/TSE.2018.2868082
– ident: ref69
  doi: 10.1145/1353673.1353677
– ident: ref27
  doi: 10.1109/ISSRE.2015.7381798
– ident: ref74
  doi: 10.1109/TSE.2015.2496939
– start-page: 537
  year: 2018
  ident: ref57
  article-title: Are mutation scores correlated with real fault detection? A large scale empirical study on the relationship between mutants and real faults
  publication-title: Proc IEEE/ACM Int Conf Softw Eng
– ident: ref10
  doi: 10.1109/ASE.2009.77
– ident: ref29
  doi: 10.1109/ICST.2013.12
– ident: ref73
  doi: 10.1145/2771783.2771788
– volume: 32
  start-page: 733
  year: 2006
  ident: ref26
  article-title: On the use of mutation faults in empirical assessments of test case prioritization techniques
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2006.92
– year: 2010
  ident: ref16
  article-title: Development at the speed and scale of google
  publication-title: Proc Int Softw Dev Conf
– ident: ref75
  doi: 10.1002/stv.430
– ident: ref53
  doi: 10.1145/3092703.3092731
– ident: ref8
  doi: 10.1109/TSE.2007.38
– ident: ref70
  doi: 10.1002/stvr.1695
– ident: ref66
  doi: 10.1109/ICSM.2009.5306350
– ident: ref34
  doi: 10.1109/ISSRE.2014.40
– start-page: 267
  year: 2007
  ident: ref59
  article-title: Test-case prioritization with model-checkers
  publication-title: Proc IASTED Int Conf Web-Based Education
– ident: ref68
  doi: 10.1145/1526709.1526830
– start-page: 101
  year: 1985
  ident: ref55
  article-title: Adaptive selection methods for genetic algorithms
  publication-title: Proc Intl Conf on Genetic Algorithms
– ident: ref18
  doi: 10.1145/3180155.3180210
– ident: ref38
  doi: 10.2307/2333709
– ident: ref23
  doi: 10.1145/3106237.3106258
– ident: ref62
  doi: 10.1109/APSEC.2008.63
– ident: ref65
  doi: 10.1109/TSE.2003.1183927
– ident: ref13
  doi: 10.1145/2635868.2635910
– ident: ref6
  doi: 10.1109/ISSRE.1997.630875
– ident: ref9
  doi: 10.1002/j.1538-7305.1965.tb04146.x
– year: 2021
  ident: ref32
– ident: ref12
  doi: 10.1145/2884781.2884791
– ident: ref41
  doi: 10.4324/9780203771587
– ident: ref72
  doi: 10.1007/s11704-016-6112-3
– ident: ref79
  doi: 10.1109/ISSREW.2018.00014
– ident: ref50
  doi: 10.1145/3133916
– ident: ref36
  doi: 10.1109/ICST.2014.11
– ident: ref61
  doi: 10.1109/ICSE.2015.47
– ident: ref25
  doi: 10.1145/1062455.1062530
– start-page: 269
  year: 2017
  ident: ref46
  article-title: Test case prioritization based on dissimilarity clustering using historical data analysis
  publication-title: Proc Int Conf Inf Commun Comput Technol
– ident: ref35
  doi: 10.1109/ICSME.2018.00033
– ident: ref45
  doi: 10.1145/3194733.3194735
– start-page: 113
  year: 2004
  ident: ref64
  article-title: Empirical studies of test case prioritization in a JUnit testing environment
  publication-title: Proc 8th Int Symp Softw Rel Eng
– ident: ref51
  doi: 10.1109/ICSE.2017.62
– ident: ref76
  doi: 10.1007/s11219-012-9181-z
– ident: ref7
  doi: 10.1109/ICSE.2013.6606565
– ident: ref30
  doi: 10.1109/TSE.2010.58
– ident: ref58
  doi: 10.1145/226295.226313
– ident: ref82
  doi: 10.1109/RCoSE.2015.11
– ident: ref14
  doi: 10.1007/s10664-014-9338-4
– ident: ref80
  doi: 10.1016/j.jss.2017.09.031
– ident: ref54
  doi: 10.1109/TSE.2003.1245299
– ident: ref63
  doi: 10.1145/347324.348910
– ident: ref43
  doi: 10.2307/3001913
– volume: 31
  start-page: 1
  year: 2021
  ident: ref21
  article-title: Parallel test prioritization
  publication-title: ACM Trans Softw Eng Methodol
– year: 2009
  ident: ref11
  publication-title: Introduction to Algorithms
– ident: ref15
  doi: 10.1109/ICSE-SEIP.2017.16
– volume: 2
  start-page: 1042
  year: 2011
  ident: ref77
  article-title: A survey on model based test case prioritization
  publication-title: Int J Comput Sci Inf Technol
– ident: ref2
  doi: 10.1109/ICSE.2001.919106
– ident: ref19
  doi: 10.1007/978-1-4612-4380-9_6
– year: 2021
  ident: ref33
– ident: ref81
  doi: 10.1109/ICSM.2013.91
SSID ssj0005775
ssib053395008
Score 2.4696968
Snippet In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault detection. However, little work has taken...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5102
SubjectTerms acceleration
additional strategy
Algorithms
Codes
Data structures
Effectiveness
Efficiency
Fault detection
Genetic algorithms
Greedy algorithms
Iterative methods
Software algorithms
Software engineering
Test case prioritization
Testing
Time complexity
Web and internet services
Title AGA: An Accelerated Greedy Additional Algorithm for Test Case Prioritization
URI https://ieeexplore.ieee.org/document/9662236
https://www.proquest.com/docview/2748564162
Volume 48
WOSCitedRecordID wos000896667600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1939-3520
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005775
  issn: 0098-5589
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGLVatYrZKDF8G1-8pm420prR6kFKzQ27J5aaG20ofgv3eyj_agCN6WJYEwk8l8XzIPgOs4FJJnoXGiUGgnlEw6IvCVY5Ay45npKaqKZhNsOIwnEz6qwe02F0ZrnQef6Tv7mb_lq4Xc2KuyLkJz9GZRHeqMsSJXaxfOwRit6mNSGvPqSdLl3fFzH4mg7yE_DRjPweTOBeU9VX4cxLl3GTT_t65DOChRJEkKtR9BTc-PoVl1aCClwbbgKXlI7kkyJ4mU6F9sWQhFbKiN-iKJUtPiIpAks9fFcrp-eycIYckY10d66N3IaDm1_8tUzRN4GfTHvUen7J_gSJ97ayfL4kgEoQxdpY0IZCC5q3ylqPAFpTSLqWuySNnatDySQWYQPTKhhSuzyBNMBKfQmC_m-gyINBR5madVhHARUURmjEFz1orG2tMxb0O3Emkqy-LitsfFLM1JhstTVEJqlZCWSmjDzXbGR1FY44-xLSv07bhS3m3oVFpLS8tbpciyYxohzPTPf591Afu-TWHIQ1I60FgvN_oS9uTnerpaXuWb6hv-Eslt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH7UBfTiVsW6zsGLYGy2STLeQqlWrKVghN5CZtOCthKr4L_3TZb2oAjeQpiB4b15875v5i0AZ5HPBct8bQU-V5YvQmFxz5WWRsqMZ6YjqSybTYSDQTQasWEDLua5MEqpIvhMXZrP4i1fTsWHuSprIzRHbxYswQr1fdcps7UWAR1hSOsKmZRGrH6UtFk7eegiFXQdZKheyAo4uXBCRVeVH0dx4V-uN_-3si3YqHAkiUvFb0NDTXZgs-7RQCqTbUI_vomvSDwhsRDoYUxhCElMsI38IrGU4_IqkMQvT9N8PHt-JQhiSYLrIx30b2SYj83_KllzFx6vu0mnZ1UdFCzhMmdmZVkUcM8Xvi2V5p7wBLOlKyXlLqeUZhG1dRZIU52WBcLLNOLHkCtuiyxweMi9PVieTCdqH4jQFJmZo2SAgBFxRKa1RoNWkkbKURFrQbsWaSqq8uKmy8VLWtAMm6WohNQoIa2U0ILz-Yy3srTGH2ObRujzcZW8W3BUay2tbO89RZ4d0QCBpnvw-6xTWOsl9_20fzu4O4R11yQ0FAEqR7A8yz_UMayKz9n4PT8pNtg3o3TMtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AGA%3A+An+Accelerated+Greedy+Additional+Algorithm+for+Test+Case+Prioritization&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Li%2C+Feng&rft.au=Zhou%2C+Jianyi&rft.au=Li%2C+Yinzhu&rft.au=Hao%2C+Dan&rft.date=2022-12-01&rft.pub=IEEE+Computer+Society&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=48&rft.issue=12&rft.spage=5102&rft_id=info:doi/10.1109%2FTSE.2021.3137929&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon