MespaConfig: Memory-Sparing Configuration Auto-Tuning for Co-Located In-Memory Cluster Computing Jobs

Distributed in-memory computing frameworks usually have lots of parameters (e.g., the buffer size of shuffle) to form a configuration for each execution. A well-tuned configuration can bring large improvements of performance. However, to improve resource utilization, jobs are often share the same cl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on services computing Ročník 15; číslo 5; s. 2883 - 2896
Hlavní autori: Zong, Zan, Wen, Lijie, Hu, Xuming, Han, Rui, Qian, Chen, Lin, Li
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1939-1374, 2372-0204
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Distributed in-memory computing frameworks usually have lots of parameters (e.g., the buffer size of shuffle) to form a configuration for each execution. A well-tuned configuration can bring large improvements of performance. However, to improve resource utilization, jobs are often share the same cluster, which causes dynamic cluster load conditions. According to our observation, the variation of cluster load reduces effectiveness of configuration tuning. Besides, as a common problem of cluster computing jobs, overestimation of resources also occurs during configuration tuning. It is challenging to efficiently find the optimal configuration in a shared cluster with the consideration of memory-sparing. In this article, we introduce MespaConfig, a job-level configuration optimizer for distributed in-memory computing jobs. Advancements of MespaConfig over previous work are features including memory-sparing and load-sensitive. We evaluate MespaConfig by 6 typical Spark programs under different load conditions. The evaluation results show that MespaConfig improves the performance of six typical programs by up to 12× compared with default configurations. MespaConfig also achieves at most 41 percent reduction of configuration memory usage and reduces the optimization time overhead by 10.8× compared with the state-of-the-art approach.
AbstractList Distributed in-memory computing frameworks usually have lots of parameters (e.g., the buffer size of shuffle) to form a configuration for each execution. A well-tuned configuration can bring large improvements of performance. However, to improve resource utilization, jobs are often share the same cluster, which causes dynamic cluster load conditions. According to our observation, the variation of cluster load reduces effectiveness of configuration tuning. Besides, as a common problem of cluster computing jobs, overestimation of resources also occurs during configuration tuning. It is challenging to efficiently find the optimal configuration in a shared cluster with the consideration of memory-sparing. In this article, we introduce MespaConfig, a job-level configuration optimizer for distributed in-memory computing jobs. Advancements of MespaConfig over previous work are features including memory-sparing and load-sensitive. We evaluate MespaConfig by 6 typical Spark programs under different load conditions. The evaluation results show that MespaConfig improves the performance of six typical programs by up to 12× compared with default configurations. MespaConfig also achieves at most 41 percent reduction of configuration memory usage and reduces the optimization time overhead by 10.8× compared with the state-of-the-art approach.
Author Wen, Lijie
Qian, Chen
Zong, Zan
Hu, Xuming
Lin, Li
Han, Rui
Author_xml – sequence: 1
  givenname: Zan
  orcidid: 0000-0002-7828-9030
  surname: Zong
  fullname: Zong, Zan
  email: zongz17@mails.tsinghua.edu.cn
  organization: School of Software, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Lijie
  orcidid: 0000-0003-0358-3160
  surname: Wen
  fullname: Wen, Lijie
  email: wenlj@tsinghua.edu.cn
  organization: School of Software, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Xuming
  orcidid: 0000-0001-6075-4224
  surname: Hu
  fullname: Hu, Xuming
  email: hxm19@mails.tsinghua.edu.cn
  organization: School of Software, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Rui
  orcidid: 0000-0001-6894-1921
  surname: Han
  fullname: Han, Rui
  email: hanrui@bit.edu.cn
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Chen
  orcidid: 0000-0003-0155-8009
  surname: Qian
  fullname: Qian, Chen
  email: qc16@mails.tsinghua.edu.cn
  organization: School of Software, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Li
  surname: Lin
  fullname: Lin, Li
  email: lin-l16@mails.tsinghua.edu.cn
  organization: School of Software, Tsinghua University, Beijing, China
BookMark eNp9kDtPwzAURi1UJNrCjsQSidnFj9Sx2aqIR1ErhpY5Ms51laqNg-0M_fckpGJgYLJ0v3Oudb8JGtWuBoRuKZlRStTDdpPPGGF0xonglMoLNGY8Y5gwko7QmCquMOVZeoUmIewJEUxKNUawhtDo3NW22j0mazg6f8KbRvuq3iXDuPU6Vq5OFm10eNvWfWKd71K8ckZHKJNljQc1yQ9tiNCHx6aNPfrmPsM1urT6EODm_E7Rx_PTNn_Fq_eXZb5YYcMUjVhnmqRWUWPKFBinQoKUtgQlmYCSl9ZCSebGWGEEBQG2A3Sacg1gpGaWT9H9sLfx7quFEIu9a33dfVmwjLF5KjIlOkoMlPEuBA-2MFX8uTF6XR0KSoq-0qKrtOgrLc6VdiL5Iza-Omp_-k-5G5QKAH5xxUVGSMq_AR_xhQo
CODEN ITSCAD
CitedBy_id crossref_primary_10_1186_s13677_023_00465_z
crossref_primary_10_1145_3711119
crossref_primary_10_1109_TSC_2023_3325302
crossref_primary_10_1109_TPDS_2023_3266110
crossref_primary_10_1109_TCC_2024_3437484
crossref_primary_10_1007_s10586_024_04478_4
crossref_primary_10_3390_mi14030651
Cites_doi 10.1007/978-3-540-31880-4_11
10.1109/NAS.2017.8026871
10.1145/2523616.2523633
10.1109/ICDCS.2019.00012
10.1109/CLUSTER.2012.35
10.1016/B978-008045405-4.00149-X
10.1007/978-3-319-43283-0_2
10.1109/BigData.2017.8258257
10.1145/2371536.2371547
10.1145/3173162.3173187
10.1080/00031305.2016.1154108
10.1109/MSST.2010.5496972
10.1109/CLOUD.2016.0034
10.1145/2076022.1993495
10.1109/HPCC-SmartCity-DSS.2016.0053
10.1109/HPCC-SmartCity-DSS.2016.0088
10.7551/mitpress/3927.001.0001
10.1016/j.future.2017.08.011
10.1145/2600212.2600229
10.1145/3127479.3127492
10.1109/TPDS.2015.2449299
10.1023/A:1007618119488
10.1109/TPDS.2019.2923197
10.1145/781027.781052
10.1109/MASCOTS.2013.9
10.1145/2541940.2541941
10.1145/2391229.2391236
10.1145/3127479.3128605
10.1145/3267809.3267830
10.1214/19-AOS1931
10.5120/ijca2017913370
10.1109/4235.996017
10.1145/1327452.1327492
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSC.2021.3063118
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2372-0204
EndPage 2896
ExternalDocumentID 10_1109_TSC_2021_3063118
9367004
Genre orig-research
GrantInformation_xml – fundername: Tsinghua BNRist
– fundername: National Natural Science Foundation of China; National Nature Science Foundation of China
  grantid: 71690231
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB1704003
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-a7a04f91ccd4e23168e88fde9826ed3dffed05ccf6c61e6ef68ea443aeec8a2f3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865092800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1374
IngestDate Sun Nov 09 07:04:32 EST 2025
Tue Nov 18 22:31:27 EST 2025
Sat Nov 29 02:04:35 EST 2025
Wed Aug 27 02:29:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a7a04f91ccd4e23168e88fde9826ed3dffed05ccf6c61e6ef68ea443aeec8a2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7828-9030
0000-0001-6075-4224
0000-0003-0155-8009
0000-0003-0358-3160
0000-0001-6894-1921
PQID 2722546796
PQPubID 85503
PageCount 14
ParticipantIDs proquest_journals_2722546796
crossref_citationtrail_10_1109_TSC_2021_3063118
ieee_primary_9367004
crossref_primary_10_1109_TSC_2021_3063118
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on services computing
PublicationTitleAbbrev TSC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref52
ref11
ref10
ref32
ref17
ref38
ref19
ref18
Zaharia (ref1)
ref50
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref42
ref41
ref21
ref49
ref29
Seber (ref33) 2012; 329
Boutin (ref51)
ref8
ref7
Ousterhout (ref28)
Lu (ref31)
ref4
ref3
ref6
Iorgulescu (ref22)
ref5
Haykin (ref30) 2009
References_xml – ident: ref37
  doi: 10.1007/978-3-540-31880-4_11
– ident: ref52
  doi: 10.1109/NAS.2017.8026871
– ident: ref29
  doi: 10.1145/2523616.2523633
– ident: ref14
  doi: 10.1109/ICDCS.2019.00012
– ident: ref10
  doi: 10.1109/CLUSTER.2012.35
– ident: ref26
  doi: 10.1016/B978-008045405-4.00149-X
– ident: ref19
  doi: 10.1007/978-3-319-43283-0_2
– ident: ref25
  article-title: A python package for statistical computations
– ident: ref21
  doi: 10.1109/BigData.2017.8258257
– ident: ref4
  doi: 10.1145/2371536.2371547
– ident: ref3
  doi: 10.1145/3173162.3173187
– ident: ref24
  doi: 10.1080/00031305.2016.1154108
– ident: ref38
  doi: 10.1109/MSST.2010.5496972
– ident: ref45
  doi: 10.1109/CLOUD.2016.0034
– ident: ref48
  doi: 10.1145/2076022.1993495
– ident: ref49
  doi: 10.1109/HPCC-SmartCity-DSS.2016.0053
– ident: ref5
  doi: 10.1109/HPCC-SmartCity-DSS.2016.0088
– ident: ref42
  doi: 10.7551/mitpress/3927.001.0001
– ident: ref8
  doi: 10.1016/j.future.2017.08.011
– ident: ref17
  doi: 10.1145/2600212.2600229
– ident: ref23
  doi: 10.1145/3127479.3127492
– ident: ref6
  doi: 10.1109/TPDS.2015.2449299
– ident: ref15
  article-title: Apache spark survey from typesafe
– ident: ref18
  doi: 10.1023/A:1007618119488
– ident: ref50
  doi: 10.1109/TPDS.2019.2923197
– volume-title: Neural Networks and Learning Machines
  year: 2009
  ident: ref30
– ident: ref41
  doi: 10.1145/781027.781052
– ident: ref47
  doi: 10.1109/MASCOTS.2013.9
– volume: 329
  volume-title: Linear Regression Analysis
  year: 2012
  ident: ref33
– start-page: 285
  volume-title: Proc. USENIX 11th USENIX Conf. Operating Syst. Des. Implement.
  ident: ref51
  article-title: Apollo: Scalable and coordinated scheduling for cloud-scale computing
– start-page: 293
  volume-title: Proc. 12th USENIX Conf. Netw. Syst. Des. Implementation
  ident: ref28
  article-title: Making sense of performance in data analytics frameworks
– ident: ref13
  doi: 10.1145/2541940.2541941
– ident: ref12
  doi: 10.1145/2391229.2391236
– start-page: 97
  volume-title: Proc. USENIX Conf. Usenix Annu. Tech. Conf.
  ident: ref22
  article-title: Don’t cry over spilled records: Memory elasticity of data-parallel applications and its application to cluster scheduling
– ident: ref7
  doi: 10.1145/3127479.3128605
– ident: ref11
  doi: 10.1145/3267809.3267830
– start-page: 6232
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref31
  article-title: The expressive power of neural networks: A view from the width
– ident: ref32
  doi: 10.1214/19-AOS1931
– ident: ref36
  doi: 10.5120/ijca2017913370
– ident: ref35
  doi: 10.1109/4235.996017
– start-page: 95
  volume-title: Proc. 2nd USENIX Conf. Hot Top. Cloud Comput.
  ident: ref1
  article-title: Spark: Cluster computing with working sets
– ident: ref46
  doi: 10.1145/1327452.1327492
SSID ssj0062889
Score 2.3477416
Snippet Distributed in-memory computing frameworks usually have lots of parameters (e.g., the buffer size of shuffle) to form a configuration for each execution. A...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2883
SubjectTerms Cluster computing
Clusters
co-locate
Computation
Computational modeling
Configuration tuning
Configurations
Distributed memory
in-memory computing
Load modeling
memory-sparing
Optimization
Parallel processing
Performance enhancement
performance optimization
Predictive models
Resource utilization
Tuning
Title MespaConfig: Memory-Sparing Configuration Auto-Tuning for Co-Located In-Memory Cluster Computing Jobs
URI https://ieeexplore.ieee.org/document/9367004
https://www.proquest.com/docview/2722546796
Volume 15
WOSCitedRecordID wos000865092800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-0204
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062889
  issn: 1939-1374
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46fNAHf4vTKXnwRTBbf6RN49sYDhU3BCf4VtLkMgbSilsF_3tzbTcERfCttHel9Gsvl-Tu-wi5EGEkMpGFLE54xjgELg4qzpkFZROjwEJSNQo_iPE4eXmRj2vkatULAwBV8Rl08bDayzeFLnGprCeRbQzJP9eFiOterWXURdVcudyG9GRv8jRwk7_A77qUOPRR0uPbsFPpqPwIvtWIMtz537Psku0mc6T9Guo9sgb5Ptn6xid4QGAELkBgE99sek1HWET7yZ5QZzCf0vp0WSNO--WiYJMSV0Woy1vdVfZQYHWUoXc5q13p4LVEHgVaSz-g6X2RzQ_J8_BmMrhljY4C04H0F0wJ5XErfa2NAwOVqiBJrAHpphZgQmMtGC_S2sY69iEG6wwcXqEC0IkKbHhEWnmRwzGhJvEUV0ZEUSx4JCN369AEPHKZRpZx32uT3vI1p7ohGUeti9e0mmx4MnXApAhM2gDTJpcrj7eaYOMP2wMEYmXXYNAmnSWSafMHztNABEj1L2R88rvXKdkMsJWhqhfrkNbivYQzsqE_FrP5-3n1cX0B0ufQCw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED5KV9j6sG7ryrK1mx72MpgaW5Ytq28lNKRdEgbNoG9Glk6lUOzRxIX---psJxQ6Cnsz9p0x_uzTSbr7PoDvKklVqcqEZ7ksuUQR4qCRkns0PncGPeZto_BUzef51ZX-vQU_N70wiNgWn-ExHbZ7-a62DS2VDTWxjRH556tUShF13VrruEu6uXq9ERnp4eJyFKZ_Ij4OSXESk6jHk4GnVVJ5Fn7bMWW8939P8w7e9rkjO-3Afg9bWH2A3SeMgvuAMwwhgtr4bq5P2IzKaB_4JSkNVtesO910mLPTZlXzRUPrIixkruEqn9ZUH-XYecU7Vza6bYhJgXXiD2R6UZfLj_BnfLYYTXivpMCt0PGKG2Ui6XVsrQtwkFYV5rl3qMPkAl3ivEcXpdb6zGYxZuiDQUAsMYg2N8InB7Bd1RV-AubyyEjjVJpmSqY6DbdOnJBpyDXKUsbRAIbr11zYnmac1C5ui3a6EekiAFMQMEUPzAB-bDz-dhQbL9juExAbux6DARyukSz6f3BZCCWI7F_p7PO_vb7B68liNi2m5_NfX-CNoMaGtnrsELZXdw0ewY69X90s7762H9ojyzvTUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MespaConfig%3A+Memory-Sparing+Configuration+Auto-Tuning+for+Co-Located+In-Memory+Cluster+Computing+Jobs&rft.jtitle=IEEE+transactions+on+services+computing&rft.au=Zong%2C+Zan&rft.au=Wen%2C+Lijie&rft.au=Hu%2C+Xuming&rft.au=Han%2C+Rui&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=2372-0204&rft.volume=15&rft.issue=5&rft.spage=2883&rft.epage=2896&rft_id=info:doi/10.1109%2FTSC.2021.3063118&rft.externalDocID=9367004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1374&client=summon