Unsupervised learning with a physics-based autoencoder for estimating the thickness and mixing ratio of pigments
Layered surface objects represented by decorated tomb murals and watercolors are in danger of deterioration and damage. To address these dangers, it is necessary to analyze the pigments' thickness and mixing ratio and record the current status. This paper proposes an unsupervised autoencoder mo...
Gespeichert in:
| Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Jg. 40; H. 1; S. 116 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.01.2023
|
| ISSN: | 1520-8532, 1520-8532 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Layered surface objects represented by decorated tomb murals and watercolors are in danger of deterioration and damage. To address these dangers, it is necessary to analyze the pigments' thickness and mixing ratio and record the current status. This paper proposes an unsupervised autoencoder model for thickness and mixing ratio estimation. The input of our autoencoder is spectral data of layered surface objects. Our autoencoder is unique, to our knowledge, in that the decoder part uses a physical model, the Kubelka-Munk model. Since we use the Kubelka-Munk model for the decoder, latent variables in the middle layer can be interpretable as the pigment thickness and mixing ratio. We conducted a quantitative evaluation using synthetic data and confirmed that our autoencoder provides a highly accurate estimation. We measured an object with layered surface pigments for qualitative evaluation and confirmed that our method is valid in an actual environment. We also present the superiority of our unsupervised autoencoder over supervised learning. |
|---|---|
| AbstractList | Layered surface objects represented by decorated tomb murals and watercolors are in danger of deterioration and damage. To address these dangers, it is necessary to analyze the pigments' thickness and mixing ratio and record the current status. This paper proposes an unsupervised autoencoder model for thickness and mixing ratio estimation. The input of our autoencoder is spectral data of layered surface objects. Our autoencoder is unique, to our knowledge, in that the decoder part uses a physical model, the Kubelka-Munk model. Since we use the Kubelka-Munk model for the decoder, latent variables in the middle layer can be interpretable as the pigment thickness and mixing ratio. We conducted a quantitative evaluation using synthetic data and confirmed that our autoencoder provides a highly accurate estimation. We measured an object with layered surface pigments for qualitative evaluation and confirmed that our method is valid in an actual environment. We also present the superiority of our unsupervised autoencoder over supervised learning. Layered surface objects represented by decorated tomb murals and watercolors are in danger of deterioration and damage. To address these dangers, it is necessary to analyze the pigments' thickness and mixing ratio and record the current status. This paper proposes an unsupervised autoencoder model for thickness and mixing ratio estimation. The input of our autoencoder is spectral data of layered surface objects. Our autoencoder is unique, to our knowledge, in that the decoder part uses a physical model, the Kubelka-Munk model. Since we use the Kubelka-Munk model for the decoder, latent variables in the middle layer can be interpretable as the pigment thickness and mixing ratio. We conducted a quantitative evaluation using synthetic data and confirmed that our autoencoder provides a highly accurate estimation. We measured an object with layered surface pigments for qualitative evaluation and confirmed that our method is valid in an actual environment. We also present the superiority of our unsupervised autoencoder over supervised learning.Layered surface objects represented by decorated tomb murals and watercolors are in danger of deterioration and damage. To address these dangers, it is necessary to analyze the pigments' thickness and mixing ratio and record the current status. This paper proposes an unsupervised autoencoder model for thickness and mixing ratio estimation. The input of our autoencoder is spectral data of layered surface objects. Our autoencoder is unique, to our knowledge, in that the decoder part uses a physical model, the Kubelka-Munk model. Since we use the Kubelka-Munk model for the decoder, latent variables in the middle layer can be interpretable as the pigment thickness and mixing ratio. We conducted a quantitative evaluation using synthetic data and confirmed that our autoencoder provides a highly accurate estimation. We measured an object with layered surface pigments for qualitative evaluation and confirmed that our method is valid in an actual environment. We also present the superiority of our unsupervised autoencoder over supervised learning. |
| Author | Fujimura, Yuki Ikeuchi, Katsushi Tsuji, Mayuka Mukaigawa, Yasuhiro Funatomi, Takuya Morimoto, Tetsuro Shitomi, Ryuta Oishi, Takeshi Takamatsu, Jun |
| Author_xml | – sequence: 1 givenname: Ryuta surname: Shitomi fullname: Shitomi, Ryuta – sequence: 2 givenname: Mayuka surname: Tsuji fullname: Tsuji, Mayuka – sequence: 3 givenname: Yuki surname: Fujimura fullname: Fujimura, Yuki – sequence: 4 givenname: Takuya surname: Funatomi fullname: Funatomi, Takuya – sequence: 5 givenname: Yasuhiro surname: Mukaigawa fullname: Mukaigawa, Yasuhiro – sequence: 6 givenname: Tetsuro surname: Morimoto fullname: Morimoto, Tetsuro – sequence: 7 givenname: Takeshi surname: Oishi fullname: Oishi, Takeshi – sequence: 8 givenname: Jun surname: Takamatsu fullname: Takamatsu, Jun – sequence: 9 givenname: Katsushi surname: Ikeuchi fullname: Ikeuchi, Katsushi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36607080$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkLtPwzAQhy1URB-wMSOPLAHH8SMeq4qnKnWAzpHrXFpDYgc7Afrfk4oiMZzupO_T6Xc3RSPnHSB0mZKbNBPs9nn1Mp_fMEml5CdoknJKkpxndPRvHqNpjG-EECZyeYbGmRBEkpxMULt2sW8hfNoIJa5BB2fdFn_Zboc1bnf7aE1MNvpAdd95cMaXEHDlA4bY2UZ3B7_bwVDWvDuIEWtX4sZ-H0AYuMe-wq3dNuC6eI5OK11HuDj2GVrf370uHpPl6uFpMV8mhqq0SzSnUCkAMcRnpTKasYxVoMBUginKN4rrKssHmQijUzCguWQ6FwJkpiCnM3T9u7cN_qMfohaNjQbqWjvwfSyoFKnKueR8UK-Oar9poCzaMJwV9sXfl-gPdNxtRw |
| CitedBy_id | crossref_primary_10_1038_s40494_025_01924_3 crossref_primary_10_3390_app14093938 crossref_primary_10_3390_s23052419 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1364/JOSAA.472775 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1520-8532 |
| ExternalDocumentID | 36607080 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 29L 4.4 5GY AAWJZ AEDJG AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN CS3 DSZJF EBS F5P NPM ODPQJ OFLFD OPJBK OPLUZ PZZ RNS ROL ROP ROS S10 TR6 UCJ WH7 XSW 7X8 |
| ID | FETCH-LOGICAL-c291t-a52ef9ee68534d9ca4434fe9ecf64925b95af38c2906ca1ecea574a866e739e82 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906447400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-8532 |
| IngestDate | Fri Jul 11 16:12:13 EDT 2025 Wed Feb 19 02:25:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-a52ef9ee68534d9ca4434fe9ecf64925b95af38c2906ca1ecea574a866e739e82 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 36607080 |
| PQID | 2761985755 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2761985755 pubmed_primary_36607080 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Jan-01 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the Optical Society of America. A, Optics, image science, and vision |
| PublicationTitleAlternate | J Opt Soc Am A Opt Image Sci Vis |
| PublicationYear | 2023 |
| SSID | ssj0004687 |
| Score | 2.4215548 |
| Snippet | Layered surface objects represented by decorated tomb murals and watercolors are in danger of deterioration and damage. To address these dangers, it is... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 116 |
| Title | Unsupervised learning with a physics-based autoencoder for estimating the thickness and mixing ratio of pigments |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36607080 https://www.proquest.com/docview/2761985755 |
| Volume | 40 |
| WOSCitedRecordID | wos000906447400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF7SuoVc-kwT9xE20OvWsvah3VMxpaYU4hgag29iH7PGlEpqZIf8_OxIMu0lUOhFF0kgRqP5vp0dfR8hH6102moLrEjoykQhNHO5BKZcnErHuQsgOrOJYrHQ67VZDg23dhirPNTErlCH2mOPfJLjehvtJOXn5jdD1yjcXR0sNB6REU9UBke6ivVfauGqM8hLEJWxBEv5MPjOlZh8v_oxm30SCb0L-TC57EBm_vx_H-8FeTbQSzrr8-ElOYLqFXnajXn69jVpVlW7b7A8tBDo4BixodiMpZb2XY6WIbIFave7GlUuA9zQxGwpynEgvU3XJ9JIcU7-J9ZJaqtAf23v8ESXTrSOtNluun_nTshq_vX6yzc2eC4wn5vpjlmZQzQAKsVLBOOtEFxEMOCjQh1DZ6SNXHtUifd2Ch6sLITVSkHBDej8DXlc1RWcEaqy4I0JeSF9WrVpZ2LGnc1Q4F4LE_mYXBxCWaacxo0KW0G9b8s_wRyT0_59lE0vvlFypVKV0tnbf7j7HTlGd_i-Y_KejGL6ouEDeeJvd9v25rxLlnRcLC_vAfdGy_8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+learning+with+a+physics-based+autoencoder+for+estimating+the+thickness+and+mixing+ratio+of+pigments&rft.jtitle=Journal+of+the+Optical+Society+of+America.+A%2C+Optics%2C+image+science%2C+and+vision&rft.au=Shitomi%2C+Ryuta&rft.au=Tsuji%2C+Mayuka&rft.au=Fujimura%2C+Yuki&rft.au=Funatomi%2C+Takuya&rft.date=2023-01-01&rft.eissn=1520-8532&rft.volume=40&rft.issue=1&rft.spage=116&rft_id=info:doi/10.1364%2FJOSAA.472775&rft_id=info%3Apmid%2F36607080&rft_id=info%3Apmid%2F36607080&rft.externalDocID=36607080 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-8532&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-8532&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-8532&client=summon |