Solving the inverse Sturm–Liouville problem with singular potential and with polynomials in the boundary conditions

In this paper, we for the first time get constructive solution for the inverse Sturm–Liouville problem with complex-valued singular potential and with polynomials of the spectral parameter in the boundary conditions. The uniqueness of recovering the potential and the polynomials from the Weyl functi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Analysis and mathematical physics Ročník 13; číslo 5
Hlavní autoři: Chitorkin, Egor E., Bondarenko, Natalia P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.10.2023
Témata:
ISSN:1664-2368, 1664-235X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we for the first time get constructive solution for the inverse Sturm–Liouville problem with complex-valued singular potential and with polynomials of the spectral parameter in the boundary conditions. The uniqueness of recovering the potential and the polynomials from the Weyl function is proved. An algorithm of solving the inverse problem is obtained and justified. More concretely, we reduce the nonlinear inverse problem to a linear equation in the Banach space of bounded infinite sequences and then derive reconstruction formulas for the problem coefficients, which are new even for the case of regular potential. Note that the spectral problem in this paper is investigated in the general non-self-adjoint form, and our method does not require the simplicity of the spectrum. In the future, our results can be applied to investigation of the inverse problem solvability and stability as well as to development of numerical methods for the reconstruction.
AbstractList In this paper, we for the first time get constructive solution for the inverse Sturm–Liouville problem with complex-valued singular potential and with polynomials of the spectral parameter in the boundary conditions. The uniqueness of recovering the potential and the polynomials from the Weyl function is proved. An algorithm of solving the inverse problem is obtained and justified. More concretely, we reduce the nonlinear inverse problem to a linear equation in the Banach space of bounded infinite sequences and then derive reconstruction formulas for the problem coefficients, which are new even for the case of regular potential. Note that the spectral problem in this paper is investigated in the general non-self-adjoint form, and our method does not require the simplicity of the spectrum. In the future, our results can be applied to investigation of the inverse problem solvability and stability as well as to development of numerical methods for the reconstruction.
ArticleNumber 79
Author Chitorkin, Egor E.
Bondarenko, Natalia P.
Author_xml – sequence: 1
  givenname: Egor E.
  surname: Chitorkin
  fullname: Chitorkin, Egor E.
  email: chitorkin.ee@ssau.ru
  organization: Institute of IT and Cybernetics, Samara National Research University, Department of Mechanics and Mathematics, Saratov State University
– sequence: 2
  givenname: Natalia P.
  surname: Bondarenko
  fullname: Bondarenko, Natalia P.
  organization: Department of Mechanics and Mathematics, Saratov State University, Department of Applied Mathematics and Physics, Samara National Research University, Peoples’ Friendship University of Russia (RUDN University)
BookMark eNp9kE1OwzAQhS1UJErpBVj5AgH_JE66RBV_UiUWBYmd5ThO68qxK9sp6o47cENOgtsgFiy6mRnZ73uaeZdgZJ1VAFxjdIMRKm8DppTkGSI0Q6jKi4yegTFmLM8ILd5HfzOrLsA0hA1CCOcFy1k5Bv3SmZ22KxjXCmq7Uz4ouIy9774_vxba9TttjIJb72qjOvih4xqGpO-N8HDrorJRCwOFbYa_rTN767r0FpLd0bV2vW2E30PpbKOjdjZcgfM2KdT0t0_A28P96_wpW7w8Ps_vFpkkMxwzQWuBq5LgFuOCsgalVpdYSYXbQs0aWqciWcHaQqIZbiuaU0TKmhGG2kZJOgHV4Cu9C8GrlksdxWGF6IU2HCN-SJAPCfKUID8myGlCyT9063WXzjgN0QEKSWxXyvON671NJ56ifgDAIomN
CitedBy_id crossref_primary_10_1063_5_0267682
crossref_primary_10_1002_mma_10050
crossref_primary_10_1016_j_jde_2024_12_038
crossref_primary_10_1515_jiip_2024_0011
Cites_doi 10.1007/BF02674332
10.1186/1687-2770-2013-180
10.1134/S0001434618070258
10.1088/0266-5611/26/1/015009
10.1088/0266-5611/20/5/006
10.1080/10652460802564837
10.1016/j.jmaa.2003.11.025
10.1088/0266-5611/19/3/312
10.1002/mma.8819
10.1007/s00020-013-2035-7
10.1093/qmath/haad004
10.1134/S0001434618010078
10.1080/17415970802538550
10.1007/s10688-010-0038-6
10.3390/math9202617
10.5556/j.tkjm.52.2021.3700
10.1134/S0001434616050163
10.1088/1361-6420/aba416
10.1007/s00025-012-0258-6
10.1007/978-3-030-47849-0
10.1007/s10231-019-00934-w
10.1007/s00025-007-0276-y
10.1090/S0077-1554-2014-00234-X
10.1515/jiip-2020-0058
10.1088/0266-5611/28/8/085008
10.1090/S0025-5718-1992-1106979-0
10.1016/j.cnsns.2020.105298
10.1088/0266-5611/26/5/055003
10.1016/S0304-0208(04)80159-2
10.1017/S030821050002521X
10.1090/proc/15155
10.1017/S0308210500012312
10.1016/j.jmaa.2007.02.012
10.3390/math11051138
10.1090/pspum/077/2459883
10.1007/s00025-023-01850-5
10.1007/978-3-0348-8247-7_8
10.1007/s00025-022-01819-w
10.1017/S0013091501000773
10.1002/mma.3380
10.1063/1.5048692
10.1016/S0377-0427(02)00579-4
10.1134/S0081543808010161
10.1007/s13324-021-00581-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13324-023-00845-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1664-235X
ExternalDocumentID 10_1007_s13324_023_00845_3
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 21-71-10001; 21-71-10001
  funderid: http://dx.doi.org/10.13039/501100006769
GroupedDBID -EM
0R~
0VY
203
2VQ
30V
4.4
406
408
409
875
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ8
HF~
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSV
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-a3ba18721f11536d0115b71ece1f5e9d3be9dc656f5c091f8343027b6260fdec3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001187009900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-2368
IngestDate Tue Nov 18 20:47:32 EST 2025
Sat Nov 29 06:22:59 EST 2025
Fri Feb 21 02:42:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 34L40
Constructive algorithm
Inverse spectral problems
34B24
34A55
Polynomials in the boundary conditions
Sturm–Liouville operator
Uniqueness theorem
34B09
Singular potential
34B07
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a3ba18721f11536d0115b71ece1f5e9d3be9dc656f5c091f8343027b6260fdec3
ParticipantIDs crossref_citationtrail_10_1007_s13324_023_00845_3
crossref_primary_10_1007_s13324_023_00845_3
springer_journals_10_1007_s13324_023_00845_3
PublicationCentury 2000
PublicationDate 20231000
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Analysis and mathematical physics
PublicationTitleAbbrev Anal.Math.Phys
PublicationYear 2023
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References ButerinSAOn inverse spectral problem for non-selfadjoint Sturm–Liouville operator on a finite intervalJ. Math. Anal. Appl.2007335173974923403521132.34010
FreilingGYurkoVDetermination of singular differential pencils from the Weyl functionAdv. Dyn. Syst. Appl.2012721711933009618
HrynivROMykytyukYVHalf-inverse spectral problems for Sturm–Liouville operators with singular potentialsInverse probl.20042051423144421091271074.34007
FreilingGIgnatievMYYurkoVAAn inverse spectral problem for Sturm–Liouville operators with singular potentials on star-type graphProc. Symp. Pure Math.20087739740824598831159.34007
IgnatievMYurkoVNumerical methods for solving inverse Sturm–Liouville problemsResults Math.2008521–2637424304131147.65062
Chugunova, M.V.: Inverse spectral problem for the Sturm–Liouville operator with eigenvalue parameter dependent boundary conditions. In: Operator Theory: Advances and Applications, vol. 123, Birkhauser, Basel, pp. 187–194 (2001)
BondarenkoNPSolving an inverse problem for the Sturm–Liouville operator with a singular potential by Yurko’s methodTamkang J. Math.202152112515442095691476.34060
Marchenko, V.A.: Sturm–Liouville Operators and Their Applications. Naukova Dumka, Kiev (1977) (Russian); English transl., Birkhauser (1986)
BindingPABrownePJWatsonBASturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter. IProc. Edinb. Math. Soc. (2)200245363164519337441019.34027
YurkoVAMethod of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-Posed Problems Series2002UtrechtVNU Science1098.34008
SavchukAMShkalikovAASturm–Liouville operators with distribution potentialsTransl. Moscow Math. Soc.20036414319220301891066.34085
ButerinSAShiehC-TYurkoVAInverse spectral problems for non-selfadjoint second-order differential operators with Dirichlet boundary conditionsBound. Value Probl.2013201318031030011297.34020
Ping, Y.W., Shieh C.-T., Tang, Y.: The partial inverse spectral problems for a differential operator. Results Math. 78, Article number: 44 (2023)
HrynivRPronskaNInverse spectral problems for energy-dependent Sturm–Liouville equationsInverse Probl.201228085008 (21 pp)29565671256.34011
SavchukAMShkalikovAAInverse problems for Sturm–Liouville operators with potentials in Sobolev spaces: uniform stabilityFunct. Anal. Appl.201044427028527685631271.34017
KravchenkoVVDirect and Inverse Sturm–Liouville Problems2020ChamBirkhäuser07214198
Wang, Y.P., Keskin, B., Shieh, C.-T.: A partial inverse problem for non-self-adjoint Sturm–Liouville operators with a constant delay. J. Inverse Ill-Posed Probl. (2023). https://doi.org/10.1515/jiip-2020-0058
WangYPUniqueness theorems for Sturm–Liouville operators with boundary conditions polynomially dependent on the eigenparameter from spectral dataResults Math.2013631131114430573591279.34027
MirzoevKAShkalikovAADifferential operators of even order with distribution coefficientsMath. Notes201699577978435074441394.47046
KonechnajaNNMirzoevKAShkalikovAAOn the asymptotic behavior of solutions to two-term differential equations with singular coefficientsMath. Notes2018104224425238334981403.34060
BindingPABrownePJWatsonBAEquivalence of inverse Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameterJ. Math. Anal. Appl.200429124626120340711046.34021
SavchukAMShkalikovAASturm–Liouville operators with singular potentialsMath. Notes199966674175317566020968.34072
Bondarenko, N.P.: Inverse problem solution and spectral data characterization for the matrix Sturm–Liouville operator with singular potential. Anal. Math. Phys. 11, Article number: 145 (2021)
Buterin, S.: Functional-differential operators on geometrical graphs with global delay and inverse spectral problems. Results Math. 78(3), Article number: 79 (2023)
BondarenkoNButerinSNumerical solution and stability of the inverse spectral problem for a convolution integro-differential operatorCommun. Nonlinear Sci. Numer. Simul.20208940979011452.65416
PronskaNReconstruction of energy-dependent Sturm-D-Liouville equations from two spectraIntegr. Equ. Oper. Theory20137640341930653011280.34016
BindingPABrownePJWatsonBASturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter. IIJ. Comput. Appl. Math.2002148114716819461931019.34028
MykytyukYVTrushNSInverse spectral problems for Sturm–Liouville operators with matrix-valued potentialsInverse Probl.200926125753541195.34022
GuliyevNJEssentially isospectral transformations and their applicationsAnnali di Matematica Pura ed Applicata202019941621164841175111448.34064
GuliyevNJSchrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameterJ. Math. Phys.20196039591381416.81056
HrynivROMykytyukYVInverse spectral problems for Sturm–Liouville operators with singular potentialsInverse Probl.200319366568419848831034.34011
Bondarenko, N.P., Chitorkin, E.E.: Inverse Sturm–Liouville problem with spectral parameter in the boundary conditions. Mathematics 11(5), Article ID 1138 (2023)
MirzoevKASturm–Liouville operatorsTrans. Moscow Math. Soc.20147528129933086131321.34042
HrynivROMankoSSInverse scattering on the half-line for energy-dependent Schrödinger equationsInverse Probl.20203691458.34142
KuznetsovaMAOn recovering quadratic pencils with singular coefficients and entire functions in the boundary conditionsMath. Methods Appl. Sci.2023465508650984564041
FreilingGYurkoVInverse Sturm–Liouville Problems and Their Applications2001HuntingtonNova Science Publishers1037.34005
FultonCTTwo-point boundary value problems with eigenvalue parameter contained in the boundary conditionsProc. R. Soc. Edinb. Sect. A.1977773–42933085931720376.34008
EckhardtJGesztesyFNicholsRSakhnovichATeschlGInverse spectral problems for Schrödinger-type operators with distributional matrix-valued potentialsDiffer. Integr. Equ.2015285/65055221340.34053
YangC-FXuX-CAmbarzumyan-type theorem with polynomially dependent eigenparameterMath. Methods Appl. Sci.2015384411441534343671338.34047
Levitan, B.M.: Inverse Sturm–Liouville Problems. Nauka, Moscow (1984) (Russian); English transl., VNU Sci. Press, Utrecht (1987)
Bondarenko N.P., Gaidel A.V.: Solvability and stability of the inverse problem for the quadratic differential pencil. Mathematics 9(20), Article ID 2617 (2021)
PöschelJTrubowitzEInverse Spectral Theory1987New YorkAcademic Press0623.34001
HrynivROMykytyukYVInverse spectral problems for Sturm–Liouville operators with singular potentials. II. Reconstruction by two spectraNorth-Holland Math. Stud.20041979711420988741095.34008
AlbeverioSGesztesyFHoegh-KrohnRHoldenHSolvable Models in Quantum Mechanics20052ProvidnceAMS Chelsea Publishing1078.81003
FultonCTSingular eigenvalue problems with eigenvalue parameter contained in the boundary conditionsProc. R. Soc. Edinb. Sect. A.1980871–21346004460458.34013
GuliyevNJInverse square singularities and eigenparameter-dependent boundary conditions are two sides of the same coinQ. J. Math.2023464224210.1093/qmath/haad004
FreilingGYurkoVInverse problems for Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameterInverse Probl.201026526471451207.47039
DjakovPMityaginBNSpectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentialsIntegr. Transforms Spec. Funct.2009203–42652731176.34108
YangYWeiGInverse scattering problems for Sturm–Liouville operators with spectral parameter dependent on boundary conditionsMath. Notes20181031–2596637402861398.34128
ChernozhukovaAFreilingGA uniqueness theorem for the boundary value problems with non-linear dependence on the spectral parameter in the boundary conditionsInverse Probl. Sci. Eng.200917677778525617141187.34016
GuliyevNJOn two-spectra inverse problemsProc. AMS.20201484491450241353131485.34083
RundellWSacksEReconstruction techniques for classical inverse Sturm–Liouville problemsMath. Comput.19925819716118311069790745.34015
SavchukAMShkalikovAAInverse problem for Sturm–Liouville operators with distribution potentials: reconstruction from two spectraRuss. J. Math. Phys.200512450751422013151396.34008
SavchukAMShkalikovAAOn the properties of maps connected with inverse Sturm–Liouville problemsProc. Steklov Inst. Math.200826021823724895151233.34010
CT Fulton (845_CR5) 1977; 77
NJ Guliyev (845_CR17) 2019; 60
AM Savchuk (845_CR25) 2003; 64
NP Bondarenko (845_CR37) 2021; 52
NN Konechnaja (845_CR33) 2018; 104
J Pöschel (845_CR3) 1987
PA Binding (845_CR8) 2002; 45
G Freiling (845_CR12) 2010; 26
RO Hryniv (845_CR26) 2003; 19
845_CR7
C-F Yang (845_CR15) 2015; 38
YV Mykytyuk (845_CR44) 2009; 26
A Chernozhukova (845_CR11) 2009; 17
N Pronska (845_CR40) 2013; 76
SA Buterin (845_CR48) 2013; 2013
KA Mirzoev (845_CR31) 2014; 75
845_CR42
Y Yang (845_CR16) 2018; 103
845_CR46
KA Mirzoev (845_CR32) 2016; 99
AM Savchuk (845_CR28) 2005; 12
W Rundell (845_CR50) 1992; 58
P Djakov (845_CR36) 2009; 20
cr-split#-845_CR2.1
cr-split#-845_CR2.2
RO Hryniv (845_CR34) 2004; 20
YP Wang (845_CR14) 2013; 63
VV Kravchenko (845_CR51) 2020
N Bondarenko (845_CR52) 2020; 89
CT Fulton (845_CR6) 1980; 87
J Eckhardt (845_CR45) 2015; 28
845_CR53
AM Savchuk (845_CR24) 1999; 66
G Freiling (845_CR35) 2008; 77
845_CR54
SA Buterin (845_CR47) 2007; 335
NJ Guliyev (845_CR19) 2020; 148
G Freiling (845_CR4) 2001
AM Savchuk (845_CR30) 2010; 44
PA Binding (845_CR10) 2004; 291
M Ignatiev (845_CR49) 2008; 52
R Hryniv (845_CR39) 2012; 28
NJ Guliyev (845_CR20) 2023
AM Savchuk (845_CR29) 2008; 260
845_CR22
S Albeverio (845_CR38) 2005
845_CR21
VA Yurko (845_CR23) 2002
RO Hryniv (845_CR41) 2020; 36
MA Kuznetsova (845_CR43) 2023; 46
cr-split#-845_CR1.1
cr-split#-845_CR1.2
PA Binding (845_CR9) 2002; 148
RO Hryniv (845_CR27) 2004; 197
G Freiling (845_CR13) 2012; 7
NJ Guliyev (845_CR18) 2020; 199
References_xml – reference: GuliyevNJOn two-spectra inverse problemsProc. AMS.20201484491450241353131485.34083
– reference: DjakovPMityaginBNSpectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentialsIntegr. Transforms Spec. Funct.2009203–42652731176.34108
– reference: GuliyevNJEssentially isospectral transformations and their applicationsAnnali di Matematica Pura ed Applicata202019941621164841175111448.34064
– reference: SavchukAMShkalikovAAOn the properties of maps connected with inverse Sturm–Liouville problemsProc. Steklov Inst. Math.200826021823724895151233.34010
– reference: SavchukAMShkalikovAAInverse problems for Sturm–Liouville operators with potentials in Sobolev spaces: uniform stabilityFunct. Anal. Appl.201044427028527685631271.34017
– reference: MykytyukYVTrushNSInverse spectral problems for Sturm–Liouville operators with matrix-valued potentialsInverse Probl.200926125753541195.34022
– reference: MirzoevKAShkalikovAADifferential operators of even order with distribution coefficientsMath. Notes201699577978435074441394.47046
– reference: Ping, Y.W., Shieh C.-T., Tang, Y.: The partial inverse spectral problems for a differential operator. Results Math. 78, Article number: 44 (2023)
– reference: BondarenkoNPSolving an inverse problem for the Sturm–Liouville operator with a singular potential by Yurko’s methodTamkang J. Math.202152112515442095691476.34060
– reference: ChernozhukovaAFreilingGA uniqueness theorem for the boundary value problems with non-linear dependence on the spectral parameter in the boundary conditionsInverse Probl. Sci. Eng.200917677778525617141187.34016
– reference: Bondarenko, N.P., Chitorkin, E.E.: Inverse Sturm–Liouville problem with spectral parameter in the boundary conditions. Mathematics 11(5), Article ID 1138 (2023)
– reference: AlbeverioSGesztesyFHoegh-KrohnRHoldenHSolvable Models in Quantum Mechanics20052ProvidnceAMS Chelsea Publishing1078.81003
– reference: SavchukAMShkalikovAASturm–Liouville operators with singular potentialsMath. Notes199966674175317566020968.34072
– reference: FultonCTTwo-point boundary value problems with eigenvalue parameter contained in the boundary conditionsProc. R. Soc. Edinb. Sect. A.1977773–42933085931720376.34008
– reference: SavchukAMShkalikovAAInverse problem for Sturm–Liouville operators with distribution potentials: reconstruction from two spectraRuss. J. Math. Phys.200512450751422013151396.34008
– reference: HrynivROMykytyukYVInverse spectral problems for Sturm–Liouville operators with singular potentials. II. Reconstruction by two spectraNorth-Holland Math. Stud.20041979711420988741095.34008
– reference: KuznetsovaMAOn recovering quadratic pencils with singular coefficients and entire functions in the boundary conditionsMath. Methods Appl. Sci.2023465508650984564041
– reference: SavchukAMShkalikovAASturm–Liouville operators with distribution potentialsTransl. Moscow Math. Soc.20036414319220301891066.34085
– reference: HrynivROMankoSSInverse scattering on the half-line for energy-dependent Schrödinger equationsInverse Probl.20203691458.34142
– reference: WangYPUniqueness theorems for Sturm–Liouville operators with boundary conditions polynomially dependent on the eigenparameter from spectral dataResults Math.2013631131114430573591279.34027
– reference: ButerinSAOn inverse spectral problem for non-selfadjoint Sturm–Liouville operator on a finite intervalJ. Math. Anal. Appl.2007335173974923403521132.34010
– reference: YangYWeiGInverse scattering problems for Sturm–Liouville operators with spectral parameter dependent on boundary conditionsMath. Notes20181031–2596637402861398.34128
– reference: KonechnajaNNMirzoevKAShkalikovAAOn the asymptotic behavior of solutions to two-term differential equations with singular coefficientsMath. Notes2018104224425238334981403.34060
– reference: Chugunova, M.V.: Inverse spectral problem for the Sturm–Liouville operator with eigenvalue parameter dependent boundary conditions. In: Operator Theory: Advances and Applications, vol. 123, Birkhauser, Basel, pp. 187–194 (2001)
– reference: Buterin, S.: Functional-differential operators on geometrical graphs with global delay and inverse spectral problems. Results Math. 78(3), Article number: 79 (2023)
– reference: FreilingGYurkoVDetermination of singular differential pencils from the Weyl functionAdv. Dyn. Syst. Appl.2012721711933009618
– reference: RundellWSacksEReconstruction techniques for classical inverse Sturm–Liouville problemsMath. Comput.19925819716118311069790745.34015
– reference: HrynivROMykytyukYVInverse spectral problems for Sturm–Liouville operators with singular potentialsInverse Probl.200319366568419848831034.34011
– reference: FultonCTSingular eigenvalue problems with eigenvalue parameter contained in the boundary conditionsProc. R. Soc. Edinb. Sect. A.1980871–21346004460458.34013
– reference: IgnatievMYurkoVNumerical methods for solving inverse Sturm–Liouville problemsResults Math.2008521–2637424304131147.65062
– reference: BondarenkoNButerinSNumerical solution and stability of the inverse spectral problem for a convolution integro-differential operatorCommun. Nonlinear Sci. Numer. Simul.20208940979011452.65416
– reference: FreilingGYurkoVInverse problems for Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameterInverse Probl.201026526471451207.47039
– reference: ButerinSAShiehC-TYurkoVAInverse spectral problems for non-selfadjoint second-order differential operators with Dirichlet boundary conditionsBound. Value Probl.2013201318031030011297.34020
– reference: Levitan, B.M.: Inverse Sturm–Liouville Problems. Nauka, Moscow (1984) (Russian); English transl., VNU Sci. Press, Utrecht (1987)
– reference: GuliyevNJInverse square singularities and eigenparameter-dependent boundary conditions are two sides of the same coinQ. J. Math.2023464224210.1093/qmath/haad004
– reference: BindingPABrownePJWatsonBASturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter. IProc. Edinb. Math. Soc. (2)200245363164519337441019.34027
– reference: YurkoVAMethod of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-Posed Problems Series2002UtrechtVNU Science1098.34008
– reference: GuliyevNJSchrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameterJ. Math. Phys.20196039591381416.81056
– reference: PronskaNReconstruction of energy-dependent Sturm-D-Liouville equations from two spectraIntegr. Equ. Oper. Theory20137640341930653011280.34016
– reference: Bondarenko N.P., Gaidel A.V.: Solvability and stability of the inverse problem for the quadratic differential pencil. Mathematics 9(20), Article ID 2617 (2021)
– reference: MirzoevKASturm–Liouville operatorsTrans. Moscow Math. Soc.20147528129933086131321.34042
– reference: EckhardtJGesztesyFNicholsRSakhnovichATeschlGInverse spectral problems for Schrödinger-type operators with distributional matrix-valued potentialsDiffer. Integr. Equ.2015285/65055221340.34053
– reference: BindingPABrownePJWatsonBASturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter. IIJ. Comput. Appl. Math.2002148114716819461931019.34028
– reference: FreilingGIgnatievMYYurkoVAAn inverse spectral problem for Sturm–Liouville operators with singular potentials on star-type graphProc. Symp. Pure Math.20087739740824598831159.34007
– reference: HrynivRPronskaNInverse spectral problems for energy-dependent Sturm–Liouville equationsInverse Probl.201228085008 (21 pp)29565671256.34011
– reference: Marchenko, V.A.: Sturm–Liouville Operators and Their Applications. Naukova Dumka, Kiev (1977) (Russian); English transl., Birkhauser (1986)
– reference: YangC-FXuX-CAmbarzumyan-type theorem with polynomially dependent eigenparameterMath. Methods Appl. Sci.2015384411441534343671338.34047
– reference: Wang, Y.P., Keskin, B., Shieh, C.-T.: A partial inverse problem for non-self-adjoint Sturm–Liouville operators with a constant delay. J. Inverse Ill-Posed Probl. (2023). https://doi.org/10.1515/jiip-2020-0058
– reference: HrynivROMykytyukYVHalf-inverse spectral problems for Sturm–Liouville operators with singular potentialsInverse probl.20042051423144421091271074.34007
– reference: FreilingGYurkoVInverse Sturm–Liouville Problems and Their Applications2001HuntingtonNova Science Publishers1037.34005
– reference: PöschelJTrubowitzEInverse Spectral Theory1987New YorkAcademic Press0623.34001
– reference: Bondarenko, N.P.: Inverse problem solution and spectral data characterization for the matrix Sturm–Liouville operator with singular potential. Anal. Math. Phys. 11, Article number: 145 (2021)
– reference: KravchenkoVVDirect and Inverse Sturm–Liouville Problems2020ChamBirkhäuser07214198
– reference: BindingPABrownePJWatsonBAEquivalence of inverse Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameterJ. Math. Anal. Appl.200429124626120340711046.34021
– volume: 66
  start-page: 741
  issue: 6
  year: 1999
  ident: 845_CR24
  publication-title: Math. Notes
  doi: 10.1007/BF02674332
– volume: 2013
  start-page: 180
  year: 2013
  ident: 845_CR48
  publication-title: Bound. Value Probl.
  doi: 10.1186/1687-2770-2013-180
– volume: 104
  start-page: 244
  issue: 2
  year: 2018
  ident: 845_CR33
  publication-title: Math. Notes
  doi: 10.1134/S0001434618070258
– volume: 26
  issue: 1
  year: 2009
  ident: 845_CR44
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/26/1/015009
– volume: 20
  start-page: 1423
  issue: 5
  year: 2004
  ident: 845_CR34
  publication-title: Inverse probl.
  doi: 10.1088/0266-5611/20/5/006
– volume: 20
  start-page: 265
  issue: 3–4
  year: 2009
  ident: 845_CR36
  publication-title: Integr. Transforms Spec. Funct.
  doi: 10.1080/10652460802564837
– volume: 291
  start-page: 246
  year: 2004
  ident: 845_CR10
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2003.11.025
– volume: 19
  start-page: 665
  issue: 3
  year: 2003
  ident: 845_CR26
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/19/3/312
– ident: #cr-split#-845_CR2.1
– volume-title: Solvable Models in Quantum Mechanics
  year: 2005
  ident: 845_CR38
– volume: 46
  start-page: 5086
  issue: 5
  year: 2023
  ident: 845_CR43
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.8819
– ident: #cr-split#-845_CR1.2
– volume: 76
  start-page: 403
  year: 2013
  ident: 845_CR40
  publication-title: Integr. Equ. Oper. Theory
  doi: 10.1007/s00020-013-2035-7
– year: 2023
  ident: 845_CR20
  publication-title: Q. J. Math.
  doi: 10.1093/qmath/haad004
– volume: 103
  start-page: 59
  issue: 1–2
  year: 2018
  ident: 845_CR16
  publication-title: Math. Notes
  doi: 10.1134/S0001434618010078
– volume: 17
  start-page: 777
  issue: 6
  year: 2009
  ident: 845_CR11
  publication-title: Inverse Probl. Sci. Eng.
  doi: 10.1080/17415970802538550
– volume-title: Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-Posed Problems Series
  year: 2002
  ident: 845_CR23
– volume: 44
  start-page: 270
  issue: 4
  year: 2010
  ident: 845_CR30
  publication-title: Funct. Anal. Appl.
  doi: 10.1007/s10688-010-0038-6
– ident: 845_CR42
  doi: 10.3390/math9202617
– volume: 52
  start-page: 125
  issue: 1
  year: 2021
  ident: 845_CR37
  publication-title: Tamkang J. Math.
  doi: 10.5556/j.tkjm.52.2021.3700
– volume: 99
  start-page: 779
  issue: 5
  year: 2016
  ident: 845_CR32
  publication-title: Math. Notes
  doi: 10.1134/S0001434616050163
– volume-title: Inverse Sturm–Liouville Problems and Their Applications
  year: 2001
  ident: 845_CR4
– volume: 36
  issue: 9
  year: 2020
  ident: 845_CR41
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aba416
– ident: #cr-split#-845_CR1.1
– volume: 63
  start-page: 1131
  year: 2013
  ident: 845_CR14
  publication-title: Results Math.
  doi: 10.1007/s00025-012-0258-6
– volume-title: Direct and Inverse Sturm–Liouville Problems
  year: 2020
  ident: 845_CR51
  doi: 10.1007/978-3-030-47849-0
– volume: 12
  start-page: 507
  issue: 4
  year: 2005
  ident: 845_CR28
  publication-title: Russ. J. Math. Phys.
– volume: 199
  start-page: 1621
  issue: 4
  year: 2020
  ident: 845_CR18
  publication-title: Annali di Matematica Pura ed Applicata
  doi: 10.1007/s10231-019-00934-w
– volume: 52
  start-page: 63
  issue: 1–2
  year: 2008
  ident: 845_CR49
  publication-title: Results Math.
  doi: 10.1007/s00025-007-0276-y
– volume: 28
  start-page: 505
  issue: 5/6
  year: 2015
  ident: 845_CR45
  publication-title: Differ. Integr. Equ.
– volume: 75
  start-page: 281
  year: 2014
  ident: 845_CR31
  publication-title: Trans. Moscow Math. Soc.
  doi: 10.1090/S0077-1554-2014-00234-X
– ident: 845_CR54
  doi: 10.1515/jiip-2020-0058
– volume: 28
  start-page: 085008 (21 pp)
  year: 2012
  ident: 845_CR39
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/28/8/085008
– volume: 58
  start-page: 161
  issue: 197
  year: 1992
  ident: 845_CR50
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1992-1106979-0
– volume: 89
  year: 2020
  ident: 845_CR52
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2020.105298
– volume: 26
  issue: 5
  year: 2010
  ident: 845_CR12
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/26/5/055003
– volume: 197
  start-page: 97
  year: 2004
  ident: 845_CR27
  publication-title: North-Holland Math. Stud.
  doi: 10.1016/S0304-0208(04)80159-2
– volume: 77
  start-page: 293
  issue: 3–4
  year: 1977
  ident: 845_CR5
  publication-title: Proc. R. Soc. Edinb. Sect. A.
  doi: 10.1017/S030821050002521X
– volume: 148
  start-page: 4491
  year: 2020
  ident: 845_CR19
  publication-title: Proc. AMS.
  doi: 10.1090/proc/15155
– volume: 87
  start-page: 1
  issue: 1–2
  year: 1980
  ident: 845_CR6
  publication-title: Proc. R. Soc. Edinb. Sect. A.
  doi: 10.1017/S0308210500012312
– volume: 64
  start-page: 143
  year: 2003
  ident: 845_CR25
  publication-title: Transl. Moscow Math. Soc.
– volume: 335
  start-page: 739
  issue: 1
  year: 2007
  ident: 845_CR47
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.02.012
– ident: 845_CR21
  doi: 10.3390/math11051138
– volume: 7
  start-page: 171
  issue: 2
  year: 2012
  ident: 845_CR13
  publication-title: Adv. Dyn. Syst. Appl.
– volume: 77
  start-page: 397
  year: 2008
  ident: 845_CR35
  publication-title: Proc. Symp. Pure Math.
  doi: 10.1090/pspum/077/2459883
– ident: 845_CR53
  doi: 10.1007/s00025-023-01850-5
– ident: 845_CR7
  doi: 10.1007/978-3-0348-8247-7_8
– ident: 845_CR22
  doi: 10.1007/s00025-022-01819-w
– volume: 45
  start-page: 631
  issue: 3
  year: 2002
  ident: 845_CR8
  publication-title: Proc. Edinb. Math. Soc. (2)
  doi: 10.1017/S0013091501000773
– volume: 38
  start-page: 4411
  year: 2015
  ident: 845_CR15
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3380
– volume: 60
  year: 2019
  ident: 845_CR17
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5048692
– ident: #cr-split#-845_CR2.2
– volume: 148
  start-page: 147
  issue: 1
  year: 2002
  ident: 845_CR9
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00579-4
– volume: 260
  start-page: 218
  year: 2008
  ident: 845_CR29
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543808010161
– ident: 845_CR46
  doi: 10.1007/s13324-021-00581-6
– volume-title: Inverse Spectral Theory
  year: 1987
  ident: 845_CR3
SSID ssj0001456467
Score 2.3086615
Snippet In this paper, we for the first time get constructive solution for the inverse Sturm–Liouville problem with complex-valued singular potential and with...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Title Solving the inverse Sturm–Liouville problem with singular potential and with polynomials in the boundary conditions
URI https://link.springer.com/article/10.1007/s13324-023-00845-3
Volume 13
WOSCitedRecordID wos001187009900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1664-235X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001456467
  issn: 1664-2368
  databaseCode: RSV
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCD1apYX-zBmy4k2TyPIhYPtYjV0lvIbnahUJPStIXe_A_-Q3-JM8m2pSAFveSQTDbLPvLNzH4zQ8hNpDUAkZMyD3ehCwYAE5EvWahUYgdcWaJk-fbaQacT9vvRiwkKKxZs98WRZPmnXgW7cQB_BhjDMAm8x_g22QG4C5DI99rtrTwrmCGlLB1r-77LHO6HJlrm92bWEWn9OLREmVb9f_07JAdGq6T31TI4Ilsqa5C60TCp2b9Fg-w_L7O0Fsdk2s2H6E-gcI8OMiRoKNoFDPr4_vxqD_LpDAMFqak5Q9FlS9G1gMxVOsonSDSCryZZWj0b5cM5RjnDiobmylZFWbVpPKdgdqcVO-yEvLce3x6emCnDwKQT2ROWcJHYIViKGrRH7qeoRIrAVlLZ2lNRygVcJOiF2pOgfeiQu3gYKtBU0qmS_JTUsjxTZ4Q6qZSWpx0hUtdVAIvas1VgKR44ypWW3yT2YipiaXKUY6mMYbzKroyjHMMox-Uox7xJbpfvjKoMHRul7xazF5vdWmwQP_-b-AXZw3L0FdnvktQm46m6IrtyNhkU4-tymf4AtoLjLQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt_h2D950ocnmeRSxKNYiVIu30N3sQqEmpWkLvfkf_If-EmeSrUUQQS85JJtN2Ozm-2b2mxmA89gYBCI35T6tQg8NAC7jQPFI664TCl2Xpcq30wxbrejlJX60QWHFTO0-25Is_9TzYDeB4M8RYzglgfe5WIQlz0WGTzZ6uzP3rFCGlLJ0rBMEHndFENlomZ-7-Y5I37dDS5RpbPzv_TZh3bJKdlVNgy1Y0Nk2bFiGyez6LbZh7eErS2uxA-N23id_AsNzrJeRQEOzNmLQ68fbe7OXjycUKMhszRlGLltGrgVSrrJBPiKhET61m6XVtUHen1KUM85o7K7sVZZVm4ZThmZ3WqnDduG5cfN0fcttGQau3NgZ8a6QXSdCS9EgexRBSiRSho5W2jG-jlMh8aCQFxpfIfswkfBoM1SSqWRSrcQe1LI80_vA3FSpum9cKVPP0wiLxnd0WNcidLWn6sEBOLNPkSibo5xKZfSTeXZlGuUERzkpRzkRB3Dxdc-gytDxa-vL2ddL7Gotfml--LfmZ7By-_TQTJp3rfsjWKXS9JXw7xhqo-FYn8Cymox6xfC0nLKfZWLmEQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt_h2D950scnmeRS1KNYiVMVb6L6gUJPSF3jzP_gP_SXOJKm1IIJ4ySHZLPuYZb6Z_WYG4Di2FhWRq7lPp9BDA4DLOFA8MqblhMJUZc7yfaqHjUb0_Bzff4viz9nu4yvJIqaBsjSlg7OutmeTwDeBQICjvuGUEN7nYhbmPKLLkb3efJp4WShbSl5G1gkCj7siiMrImZ-7mdZO01ejucaprfx_rKuwXKJNdl6IxxrMmHQdVkrkycpz3V-Hpbuv7K39DRg2sw75GRi-Y-2UiBuGNVE3vXy8vdfb2XBEAYSsrEXDyJXLyOVAjFbWzWhsKNWsleriWzfrvFL0M0o6dpf3KvNqTr1XhnPRBWtsEx5rVw8X17wsz8CVGzsD3hKy5URoQVpElSLQBC5l6BhlHOubWAuJD4V40foKUYmNhEeXpJJMKKuNEltQSbPUbANztVJV37pSas8zqC6t75iwakToGk9Vgx1wxtuSqDJ3OZXQ6CSTrMu0ygmucpKvciJ24OTrn26RuePX1qfjnUzKU9z_pfnu35ofwcL9ZS2p3zRu92CRKtYXfMB9qAx6Q3MA82o0aPd7h7n0fgIZOO7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+the+inverse+Sturm%E2%80%93Liouville+problem+with+singular+potential+and+with+polynomials+in+the+boundary+conditions&rft.jtitle=Analysis+and+mathematical+physics&rft.au=Chitorkin%2C+Egor+E.&rft.au=Bondarenko%2C+Natalia+P.&rft.date=2023-10-01&rft.issn=1664-2368&rft.eissn=1664-235X&rft.volume=13&rft.issue=5&rft_id=info:doi/10.1007%2Fs13324-023-00845-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13324_023_00845_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2368&client=summon