CLPM: A Cooperative Link Prediction Model for Industrial Internet of Things Using Partitioned Stacked Denoising Autoencoder
With the development of Industry 4.0, an increasing number of industrial Internet of Things (IIoT) mobile devices (MD), which constantly transmit data at any time, are working on the production line. However, due to node movement, signal attenuation, or physical obstacles, data must rely on the tran...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on industrial informatics Jg. 17; H. 5; S. 3620 - 3629 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1551-3203, 1941-0050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the development of Industry 4.0, an increasing number of industrial Internet of Things (IIoT) mobile devices (MD), which constantly transmit data at any time, are working on the production line. However, due to node movement, signal attenuation, or physical obstacles, data must rely on the transmission of relay nodes to finally reach the destination node. Based on this scenario, in this article, we propose a cooperative link prediction model (CLPM) using a stacked denoising autoencoder (SDAE) to predict links of the IIoT-based MDs at the next moment through historical link information. The layer structure of the SDAE model is partitioned so that the local MD and edge servers can cooperatively process the link prediction tasks. Experimental results show that our proposed CLPM outperforms others in terms of prediction performance and execution delay. |
|---|---|
| AbstractList | With the development of Industry 4.0, an increasing number of industrial Internet of Things (IIoT) mobile devices (MD), which constantly transmit data at any time, are working on the production line. However, due to node movement, signal attenuation, or physical obstacles, data must rely on the transmission of relay nodes to finally reach the destination node. Based on this scenario, in this article, we propose a cooperative link prediction model (CLPM) using a stacked denoising autoencoder (SDAE) to predict links of the IIoT-based MDs at the next moment through historical link information. The layer structure of the SDAE model is partitioned so that the local MD and edge servers can cooperatively process the link prediction tasks. Experimental results show that our proposed CLPM outperforms others in terms of prediction performance and execution delay. |
| Author | Qiu, Xuesong Zhu, Yu Gao, Zhipeng Rui, Lanlan |
| Author_xml | – sequence: 1 givenname: Lanlan orcidid: 0000-0001-7581-383X surname: Rui fullname: Rui, Lanlan email: llrui@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Yu orcidid: 0000-0002-7060-6580 surname: Zhu fullname: Zhu, Yu email: zhu_yu@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Zhipeng surname: Gao fullname: Gao, Zhipeng email: zpgao@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Xuesong orcidid: 0000-0002-7899-539X surname: Qiu fullname: Qiu, Xuesong email: xsqiu@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China |
| BookMark | eNp9kc1LAzEQxYMo2FbvgpeA56352m3HW6lfhRYL1vMSs7MaW5OapIL4z5ta8eDB03sw7zdDXrpk33mHhJxw1uecwfliMukLJlhfAIDkwz3S4aB4wVjJ9rMvS15IweQh6cb4wpgcMAkd8jmezmcXdETH3q8x6GTfkU6tW9J5wMaaZL2jM9_girY-0IlrNjEFq1fZJgwOE_UtXTxb9xTpQ8xC5zoku-WwofdJm2XWS3Tefk9Hm-TRmbwxHJGDVq8iHv9ojzxcXy3Gt8X07mYyHk0LI4CnQotWCQaMDwU3xmhTgtJDnb1oNAweS1RGDaACAwoq3rCqLSV_RNDQVAYGskfOdnvXwb9tMKb6xW-CyydroUBWig9B5VS1S5ngYwzY1sYmvX1HCtquas7qbdF1LrreFl3_FJ1B9gdcB_uqw8d_yOkOsYj4Gwee_6qq5BfC4otE |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1109_TII_2022_3202979 crossref_primary_10_1109_JIOT_2022_3150386 crossref_primary_10_1109_TNSM_2021_3116665 crossref_primary_10_1109_TGRS_2024_3510797 crossref_primary_10_1016_j_isatra_2021_10_024 crossref_primary_10_1016_j_physrep_2023_03_005 crossref_primary_10_1109_TAI_2023_3266742 crossref_primary_10_1109_TII_2023_3266406 crossref_primary_10_1109_ACCESS_2024_3426279 |
| Cites_doi | 10.1109/JIOT.2018.2868616 10.1109/INFCOMW.2019.8845240 10.1109/JSYST.2016.2630923 10.1109/ACCESS.2018.2807700 10.1016/j.jpdc.2017.08.008 10.1049/iet-smt.2016.0423 10.1109/MNET.2018.1700202 10.1109/TSC.2017.2662008 10.1109/TC.2014.2366735 10.1109/IC3.2017.8284342 10.1109/TII.2017.2786307 10.1109/TVT.2016.2536059 10.1109/ACCESS.2018.2886360 10.1109/ACCESS.2017.2783682 10.1109/COMST.2017.2782182 10.1109/ACCESS.2019.2893206 10.1109/TII.2019.2908210 10.1109/IWQoS.2018.8624183 10.1109/ACCESS.2019.2905420 10.1145/3037697.3037698 10.1109/MIE.2017.2649104 10.1109/TII.2018.2805910 10.1109/TII.2019.2899679 10.1109/COMST.2017.2694469 10.1109/TII.2019.2897001 10.1109/ACCESS.2019.2923799 10.1016/j.comcom.2018.12.001 10.1007/11538059_91 10.3390/app8112215 10.1109/TSG.2018.2888629 10.1109/TWC.2015.2476466 10.1016/j.jocs.2017.08.007 10.1109/METROI4.2018.8428334 10.1109/ACCESS.2019.2922350 10.1109/ACCESS.2019.2908920 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2020.2999318 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 3629 |
| ExternalDocumentID | 10_1109_TII_2020_2999318 9105066 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2018YFE0205502 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-a2f420901821cccac594a8a1cc2da97b5e4c47969c94961d06f531be9a9d6c973 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000622100800062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Tue Sep 23 17:40:41 EDT 2025 Tue Nov 18 22:05:35 EST 2025 Sat Nov 29 04:16:53 EST 2025 Wed Aug 27 02:43:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-a2f420901821cccac594a8a1cc2da97b5e4c47969c94961d06f531be9a9d6c973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7899-539X 0000-0001-7581-383X 0000-0002-7060-6580 |
| PQID | 2493641894 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9105066 crossref_citationtrail_10_1109_TII_2020_2999318 crossref_primary_10_1109_TII_2020_2999318 proquest_journals_2493641894 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 glorot (ref36) 2010 li (ref35) 2014 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 chen (ref21) 2018; 118 |
| References_xml | – ident: ref32 doi: 10.1109/JIOT.2018.2868616 – ident: ref28 doi: 10.1109/INFCOMW.2019.8845240 – ident: ref18 doi: 10.1109/JSYST.2016.2630923 – ident: ref22 doi: 10.1109/ACCESS.2018.2807700 – volume: 118 start-page: 369 year: 2018 ident: ref21 article-title: A location prediction-based routing scheme for opportunistic networks in an IoT scenario publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2017.08.008 – ident: ref30 doi: 10.1049/iet-smt.2016.0423 – ident: ref27 doi: 10.1109/MNET.2018.1700202 – ident: ref24 doi: 10.1109/TSC.2017.2662008 – ident: ref31 doi: 10.1109/TC.2014.2366735 – ident: ref17 doi: 10.1109/IC3.2017.8284342 – ident: ref13 doi: 10.1109/TII.2017.2786307 – ident: ref5 doi: 10.1109/TVT.2016.2536059 – ident: ref29 doi: 10.1109/ACCESS.2018.2886360 – ident: ref2 doi: 10.1109/ACCESS.2017.2783682 – ident: ref4 doi: 10.1109/COMST.2017.2782182 – ident: ref8 doi: 10.1109/ACCESS.2019.2893206 – start-page: 18 year: 2014 ident: ref35 article-title: Link prediction in Sina Microblog using comprehensive features and improved SVM algorithm publication-title: Proc IEEE Int Conf Cloud Comput Intell Syst – ident: ref25 doi: 10.1109/TII.2019.2908210 – ident: ref37 doi: 10.1109/IWQoS.2018.8624183 – ident: ref6 doi: 10.1109/ACCESS.2019.2905420 – ident: ref26 doi: 10.1145/3037697.3037698 – ident: ref3 doi: 10.1109/MIE.2017.2649104 – ident: ref12 doi: 10.1109/TII.2018.2805910 – ident: ref1 doi: 10.1109/TII.2019.2899679 – ident: ref7 doi: 10.1109/COMST.2017.2694469 – ident: ref9 doi: 10.1109/TII.2019.2897001 – ident: ref23 doi: 10.1109/ACCESS.2019.2923799 – ident: ref19 doi: 10.1016/j.comcom.2018.12.001 – ident: ref33 doi: 10.1007/11538059_91 – ident: ref20 doi: 10.3390/app8112215 – ident: ref10 doi: 10.1109/TSG.2018.2888629 – ident: ref14 doi: 10.1109/TWC.2015.2476466 – ident: ref34 doi: 10.1016/j.jocs.2017.08.007 – start-page: 249 year: 2010 ident: ref36 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref11 doi: 10.1109/METROI4.2018.8428334 – ident: ref16 doi: 10.1109/ACCESS.2019.2922350 – ident: ref15 doi: 10.1109/ACCESS.2019.2908920 |
| SSID | ssj0037039 |
| Score | 2.3478625 |
| Snippet | With the development of Industry 4.0, an increasing number of industrial Internet of Things (IIoT) mobile devices (MD), which constantly transmit data at any... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3620 |
| SubjectTerms | Attenuation Deep learning Delays Edge computing Electronic devices Industrial applications Industrial development Industrial Internet of Things Industrial Internet of Things (IIoT) Ions link prediction Noise reduction Prediction models Predictive models Servers stacked denoising autoencoder (SDAE) Task analysis |
| Title | CLPM: A Cooperative Link Prediction Model for Industrial Internet of Things Using Partitioned Stacked Denoising Autoencoder |
| URI | https://ieeexplore.ieee.org/document/9105066 https://www.proquest.com/docview/2493641894 |
| Volume | 17 |
| WOSCitedRecordID | wos000622100800062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5M8aAHf4vzFzl4Eaxrk7Tp8zam4mDKDireSpekIMgqs_PiP-9L2s2BIngLbdKWfknee8nL9wGcGre0pqMksNzkgVTaBmkeyiCmiyqVxhZeOuFpoO7v0-dnHLbgfH4Wxlrrk8_shSv6vXxT6qlbKuuQaYvJRC7BklJJfVZrNusK6rnouVHjKBA8FLMtyRA7D_0-BYI8vKCpF4WT91gwQV5T5cdE7K3Lzcb_vmsT1hsvknVr2LegZcfbsLbALbgDn73B8O6SdVmvLN9sze_NXOTJhhO3OeMAYU4J7ZWR38q-JTxYvUhoK1YWrJb1ZD6xgA1dN_PURoaRk0rj37ArOy5f_N3utCodK6axk114vLl-6N0GjdJCoDlGVZBzgiQk1yDlkSZMdYwyT3MqE4KoRrGVWipMUKPEJDJhUtDYHVnM0SQaldiD5TG9fR9YKmShNI-LXBYSo3wk6BGJjnVaFMJK3obO7OdnuqEhd2oYr5kPR0LMCK7MwZU1cLXhbN7irabg-KPujoNnXq9Bpg1HM3yzZoy-ZxR4ikRGKcqD31sdwip3GSw-vfEIlqvJ1B7Div6oXt4nJ777fQENtNjM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBFsK5N0svxbUzF4Rx7mOJb6ZIUBFlldr745z1Juykogm-hTdrSLzm3nJwP4FTb0JoKIs9wnXkyVsZLMl96IV2ME6lN7qgTHrtxr5c8PWF_Ds5nZ2GMMS75zFzYptvL14Wa2FBZk1RbSCpyHhZDKblfndaayl1BcxddddQw8AT3xXRT0sfmoNMhV5D7FyR8UViCj29KyLGq_BDFTr_crP_vyzZgrbYjWasCfhPmzGgLVr9VF9yGj3a3f3_JWqxdFK-mqvDNrO_J-mO7PWMhYZYL7YWR5cq-SDxYFSY0JStyVhF7MpdawPp2orniRpqRmUoSQLMrMyqe3d3WpCxsXUxtxjvwcHM9aN96NdeCpzgGpZdxAsUn4yDhgSJUVYgySzJqE4YYD0MjlYwxQoUSo0D7UU6rd2gwQx0pjMUuLIzo7XvAEiHzWPEwz2QuMciGgh4RqVAleS6M5A1oTn9-qupC5JYP4yV1DomPKcGVWrjSGq4GnM1GvFZFOP7ou23hmfWrkWnA4RTftF6lbym5niKSQYJy__dRJ7B8O7jvpt1O7-4AVrjNZ3HJjoewUI4n5giW1Hv5_DY-dlPxE3sK3BM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLPM%3A+A+Cooperative+Link+Prediction+Model+for+Industrial+Internet+of+Things+Using+Partitioned+Stacked+Denoising+Autoencoder&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Rui%2C+Lanlan&rft.au=Zhu%2C+Yu&rft.au=Gao%2C+Zhipeng&rft.au=Qiu%2C+Xuesong&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=17&rft.issue=5&rft.spage=3620&rft.epage=3629&rft_id=info:doi/10.1109%2FTII.2020.2999318&rft.externalDocID=9105066 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |