CLPM: A Cooperative Link Prediction Model for Industrial Internet of Things Using Partitioned Stacked Denoising Autoencoder

With the development of Industry 4.0, an increasing number of industrial Internet of Things (IIoT) mobile devices (MD), which constantly transmit data at any time, are working on the production line. However, due to node movement, signal attenuation, or physical obstacles, data must rely on the tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics Jg. 17; H. 5; S. 3620 - 3629
Hauptverfasser: Rui, Lanlan, Zhu, Yu, Gao, Zhipeng, Qiu, Xuesong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1551-3203, 1941-0050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the development of Industry 4.0, an increasing number of industrial Internet of Things (IIoT) mobile devices (MD), which constantly transmit data at any time, are working on the production line. However, due to node movement, signal attenuation, or physical obstacles, data must rely on the transmission of relay nodes to finally reach the destination node. Based on this scenario, in this article, we propose a cooperative link prediction model (CLPM) using a stacked denoising autoencoder (SDAE) to predict links of the IIoT-based MDs at the next moment through historical link information. The layer structure of the SDAE model is partitioned so that the local MD and edge servers can cooperatively process the link prediction tasks. Experimental results show that our proposed CLPM outperforms others in terms of prediction performance and execution delay.
AbstractList With the development of Industry 4.0, an increasing number of industrial Internet of Things (IIoT) mobile devices (MD), which constantly transmit data at any time, are working on the production line. However, due to node movement, signal attenuation, or physical obstacles, data must rely on the transmission of relay nodes to finally reach the destination node. Based on this scenario, in this article, we propose a cooperative link prediction model (CLPM) using a stacked denoising autoencoder (SDAE) to predict links of the IIoT-based MDs at the next moment through historical link information. The layer structure of the SDAE model is partitioned so that the local MD and edge servers can cooperatively process the link prediction tasks. Experimental results show that our proposed CLPM outperforms others in terms of prediction performance and execution delay.
Author Qiu, Xuesong
Zhu, Yu
Gao, Zhipeng
Rui, Lanlan
Author_xml – sequence: 1
  givenname: Lanlan
  orcidid: 0000-0001-7581-383X
  surname: Rui
  fullname: Rui, Lanlan
  email: llrui@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Yu
  orcidid: 0000-0002-7060-6580
  surname: Zhu
  fullname: Zhu, Yu
  email: zhu_yu@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Zhipeng
  surname: Gao
  fullname: Gao, Zhipeng
  email: zpgao@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Xuesong
  orcidid: 0000-0002-7899-539X
  surname: Qiu
  fullname: Qiu, Xuesong
  email: xsqiu@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNp9kc1LAzEQxYMo2FbvgpeA56352m3HW6lfhRYL1vMSs7MaW5OapIL4z5ta8eDB03sw7zdDXrpk33mHhJxw1uecwfliMukLJlhfAIDkwz3S4aB4wVjJ9rMvS15IweQh6cb4wpgcMAkd8jmezmcXdETH3q8x6GTfkU6tW9J5wMaaZL2jM9_girY-0IlrNjEFq1fZJgwOE_UtXTxb9xTpQ8xC5zoku-WwofdJm2XWS3Tefk9Hm-TRmbwxHJGDVq8iHv9ojzxcXy3Gt8X07mYyHk0LI4CnQotWCQaMDwU3xmhTgtJDnb1oNAweS1RGDaACAwoq3rCqLSV_RNDQVAYGskfOdnvXwb9tMKb6xW-CyydroUBWig9B5VS1S5ngYwzY1sYmvX1HCtquas7qbdF1LrreFl3_FJ1B9gdcB_uqw8d_yOkOsYj4Gwee_6qq5BfC4otE
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TII_2022_3202979
crossref_primary_10_1109_JIOT_2022_3150386
crossref_primary_10_1109_TNSM_2021_3116665
crossref_primary_10_1109_TGRS_2024_3510797
crossref_primary_10_1016_j_isatra_2021_10_024
crossref_primary_10_1016_j_physrep_2023_03_005
crossref_primary_10_1109_TAI_2023_3266742
crossref_primary_10_1109_TII_2023_3266406
crossref_primary_10_1109_ACCESS_2024_3426279
Cites_doi 10.1109/JIOT.2018.2868616
10.1109/INFCOMW.2019.8845240
10.1109/JSYST.2016.2630923
10.1109/ACCESS.2018.2807700
10.1016/j.jpdc.2017.08.008
10.1049/iet-smt.2016.0423
10.1109/MNET.2018.1700202
10.1109/TSC.2017.2662008
10.1109/TC.2014.2366735
10.1109/IC3.2017.8284342
10.1109/TII.2017.2786307
10.1109/TVT.2016.2536059
10.1109/ACCESS.2018.2886360
10.1109/ACCESS.2017.2783682
10.1109/COMST.2017.2782182
10.1109/ACCESS.2019.2893206
10.1109/TII.2019.2908210
10.1109/IWQoS.2018.8624183
10.1109/ACCESS.2019.2905420
10.1145/3037697.3037698
10.1109/MIE.2017.2649104
10.1109/TII.2018.2805910
10.1109/TII.2019.2899679
10.1109/COMST.2017.2694469
10.1109/TII.2019.2897001
10.1109/ACCESS.2019.2923799
10.1016/j.comcom.2018.12.001
10.1007/11538059_91
10.3390/app8112215
10.1109/TSG.2018.2888629
10.1109/TWC.2015.2476466
10.1016/j.jocs.2017.08.007
10.1109/METROI4.2018.8428334
10.1109/ACCESS.2019.2922350
10.1109/ACCESS.2019.2908920
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.2999318
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 3629
ExternalDocumentID 10_1109_TII_2020_2999318
9105066
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFE0205502
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-a2f420901821cccac594a8a1cc2da97b5e4c47969c94961d06f531be9a9d6c973
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000622100800062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Tue Sep 23 17:40:41 EDT 2025
Tue Nov 18 22:05:35 EST 2025
Sat Nov 29 04:16:53 EST 2025
Wed Aug 27 02:43:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a2f420901821cccac594a8a1cc2da97b5e4c47969c94961d06f531be9a9d6c973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7899-539X
0000-0001-7581-383X
0000-0002-7060-6580
PQID 2493641894
PQPubID 85507
PageCount 10
ParticipantIDs ieee_primary_9105066
crossref_citationtrail_10_1109_TII_2020_2999318
crossref_primary_10_1109_TII_2020_2999318
proquest_journals_2493641894
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
glorot (ref36) 2010
li (ref35) 2014
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
chen (ref21) 2018; 118
References_xml – ident: ref32
  doi: 10.1109/JIOT.2018.2868616
– ident: ref28
  doi: 10.1109/INFCOMW.2019.8845240
– ident: ref18
  doi: 10.1109/JSYST.2016.2630923
– ident: ref22
  doi: 10.1109/ACCESS.2018.2807700
– volume: 118
  start-page: 369
  year: 2018
  ident: ref21
  article-title: A location prediction-based routing scheme for opportunistic networks in an IoT scenario
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2017.08.008
– ident: ref30
  doi: 10.1049/iet-smt.2016.0423
– ident: ref27
  doi: 10.1109/MNET.2018.1700202
– ident: ref24
  doi: 10.1109/TSC.2017.2662008
– ident: ref31
  doi: 10.1109/TC.2014.2366735
– ident: ref17
  doi: 10.1109/IC3.2017.8284342
– ident: ref13
  doi: 10.1109/TII.2017.2786307
– ident: ref5
  doi: 10.1109/TVT.2016.2536059
– ident: ref29
  doi: 10.1109/ACCESS.2018.2886360
– ident: ref2
  doi: 10.1109/ACCESS.2017.2783682
– ident: ref4
  doi: 10.1109/COMST.2017.2782182
– ident: ref8
  doi: 10.1109/ACCESS.2019.2893206
– start-page: 18
  year: 2014
  ident: ref35
  article-title: Link prediction in Sina Microblog using comprehensive features and improved SVM algorithm
  publication-title: Proc IEEE Int Conf Cloud Comput Intell Syst
– ident: ref25
  doi: 10.1109/TII.2019.2908210
– ident: ref37
  doi: 10.1109/IWQoS.2018.8624183
– ident: ref6
  doi: 10.1109/ACCESS.2019.2905420
– ident: ref26
  doi: 10.1145/3037697.3037698
– ident: ref3
  doi: 10.1109/MIE.2017.2649104
– ident: ref12
  doi: 10.1109/TII.2018.2805910
– ident: ref1
  doi: 10.1109/TII.2019.2899679
– ident: ref7
  doi: 10.1109/COMST.2017.2694469
– ident: ref9
  doi: 10.1109/TII.2019.2897001
– ident: ref23
  doi: 10.1109/ACCESS.2019.2923799
– ident: ref19
  doi: 10.1016/j.comcom.2018.12.001
– ident: ref33
  doi: 10.1007/11538059_91
– ident: ref20
  doi: 10.3390/app8112215
– ident: ref10
  doi: 10.1109/TSG.2018.2888629
– ident: ref14
  doi: 10.1109/TWC.2015.2476466
– ident: ref34
  doi: 10.1016/j.jocs.2017.08.007
– start-page: 249
  year: 2010
  ident: ref36
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref11
  doi: 10.1109/METROI4.2018.8428334
– ident: ref16
  doi: 10.1109/ACCESS.2019.2922350
– ident: ref15
  doi: 10.1109/ACCESS.2019.2908920
SSID ssj0037039
Score 2.3478625
Snippet With the development of Industry 4.0, an increasing number of industrial Internet of Things (IIoT) mobile devices (MD), which constantly transmit data at any...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3620
SubjectTerms Attenuation
Deep learning
Delays
Edge computing
Electronic devices
Industrial applications
Industrial development
Industrial Internet of Things
Industrial Internet of Things (IIoT)
Ions
link prediction
Noise reduction
Prediction models
Predictive models
Servers
stacked denoising autoencoder (SDAE)
Task analysis
Title CLPM: A Cooperative Link Prediction Model for Industrial Internet of Things Using Partitioned Stacked Denoising Autoencoder
URI https://ieeexplore.ieee.org/document/9105066
https://www.proquest.com/docview/2493641894
Volume 17
WOSCitedRecordID wos000622100800062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5M8aAHf4vzFzl4Eaxrk7Tp8zam4mDKDireSpekIMgqs_PiP-9L2s2BIngLbdKWfknee8nL9wGcGre0pqMksNzkgVTaBmkeyiCmiyqVxhZeOuFpoO7v0-dnHLbgfH4Wxlrrk8_shSv6vXxT6qlbKuuQaYvJRC7BklJJfVZrNusK6rnouVHjKBA8FLMtyRA7D_0-BYI8vKCpF4WT91gwQV5T5cdE7K3Lzcb_vmsT1hsvknVr2LegZcfbsLbALbgDn73B8O6SdVmvLN9sze_NXOTJhhO3OeMAYU4J7ZWR38q-JTxYvUhoK1YWrJb1ZD6xgA1dN_PURoaRk0rj37ArOy5f_N3utCodK6axk114vLl-6N0GjdJCoDlGVZBzgiQk1yDlkSZMdYwyT3MqE4KoRrGVWipMUKPEJDJhUtDYHVnM0SQaldiD5TG9fR9YKmShNI-LXBYSo3wk6BGJjnVaFMJK3obO7OdnuqEhd2oYr5kPR0LMCK7MwZU1cLXhbN7irabg-KPujoNnXq9Bpg1HM3yzZoy-ZxR4ikRGKcqD31sdwip3GSw-vfEIlqvJ1B7Div6oXt4nJ777fQENtNjM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBFsK5N0svxbUzF4Rx7mOJb6ZIUBFlldr745z1Juykogm-hTdrSLzm3nJwP4FTb0JoKIs9wnXkyVsZLMl96IV2ME6lN7qgTHrtxr5c8PWF_Ds5nZ2GMMS75zFzYptvL14Wa2FBZk1RbSCpyHhZDKblfndaayl1BcxddddQw8AT3xXRT0sfmoNMhV5D7FyR8UViCj29KyLGq_BDFTr_crP_vyzZgrbYjWasCfhPmzGgLVr9VF9yGj3a3f3_JWqxdFK-mqvDNrO_J-mO7PWMhYZYL7YWR5cq-SDxYFSY0JStyVhF7MpdawPp2orniRpqRmUoSQLMrMyqe3d3WpCxsXUxtxjvwcHM9aN96NdeCpzgGpZdxAsUn4yDhgSJUVYgySzJqE4YYD0MjlYwxQoUSo0D7UU6rd2gwQx0pjMUuLIzo7XvAEiHzWPEwz2QuMciGgh4RqVAleS6M5A1oTn9-qupC5JYP4yV1DomPKcGVWrjSGq4GnM1GvFZFOP7ou23hmfWrkWnA4RTftF6lbym5niKSQYJy__dRJ7B8O7jvpt1O7-4AVrjNZ3HJjoewUI4n5giW1Hv5_DY-dlPxE3sK3BM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CLPM%3A+A+Cooperative+Link+Prediction+Model+for+Industrial+Internet+of+Things+Using+Partitioned+Stacked+Denoising+Autoencoder&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Rui%2C+Lanlan&rft.au=Zhu%2C+Yu&rft.au=Gao%2C+Zhipeng&rft.au=Qiu%2C+Xuesong&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=17&rft.issue=5&rft.spage=3620&rft.epage=3629&rft_id=info:doi/10.1109%2FTII.2020.2999318&rft.externalDocID=9105066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon