A Hybrid Quantum-Behaved Particle Swarm Optimization Algorithm for Solving Inverse Scattering Problems
A hybrid inversion approach based on the quantum-behaved particle swarm optimization (QPSO) method is presented in this article to solve electromagnetic inverse problems. Inverse scattering problems are ill-posed and are often transformed into optimization problems by defining a suitable cost functi...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on antennas and propagation Jg. 69; H. 9; S. 5861 - 5869 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-926X, 1558-2221 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A hybrid inversion approach based on the quantum-behaved particle swarm optimization (QPSO) method is presented in this article to solve electromagnetic inverse problems. Inverse scattering problems are ill-posed and are often transformed into optimization problems by defining a suitable cost function, which can be minimized by evolutionary algorithms. This article is aimed at assessing the effectiveness of a customized QPSO in reconstructing 2-D dielectric scatterers. The bottleneck that restricts the application of the evolutionary algorithm in large-scale optimization problems is its computational cost. In this article, the diffraction tomographic image is used as an initial guess for the QPSO. Moreover, a weighted mean best position according to the fitness values of the particles is introduced to expand the contribution of excellent particles on population evolution. This hybrid approach, denoted as HQPSO, makes full use of the complementary advantages of linear reconstruction algorithms and stochastic optimization algorithms and is, thus, able to ensure accuracy and improve computational efficiency. Numerical experiments for different types of dielectric objects are performed with synthetic and experimental inverse-scattering data. |
|---|---|
| AbstractList | A hybrid inversion approach based on the quantum-behaved particle swarm optimization (QPSO) method is presented in this article to solve electromagnetic inverse problems. Inverse scattering problems are ill-posed and are often transformed into optimization problems by defining a suitable cost function, which can be minimized by evolutionary algorithms. This article is aimed at assessing the effectiveness of a customized QPSO in reconstructing 2-D dielectric scatterers. The bottleneck that restricts the application of the evolutionary algorithm in large-scale optimization problems is its computational cost. In this article, the diffraction tomographic image is used as an initial guess for the QPSO. Moreover, a weighted mean best position according to the fitness values of the particles is introduced to expand the contribution of excellent particles on population evolution. This hybrid approach, denoted as HQPSO, makes full use of the complementary advantages of linear reconstruction algorithms and stochastic optimization algorithms and is, thus, able to ensure accuracy and improve computational efficiency. Numerical experiments for different types of dielectric objects are performed with synthetic and experimental inverse-scattering data. |
| Author | Yang, Chun Xia Zhang, Jian Tong, Mei Song |
| Author_xml | – sequence: 1 givenname: Chun Xia orcidid: 0000-0003-2445-8692 surname: Yang fullname: Yang, Chun Xia email: chunxiay@shnu.edu.cn organization: Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai Normal University, Shanghai, China – sequence: 2 givenname: Jian orcidid: 0000-0003-0660-2240 surname: Zhang fullname: Zhang, Jian organization: Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China – sequence: 3 givenname: Mei Song orcidid: 0000-0001-6317-1008 surname: Tong fullname: Tong, Mei Song email: mstong@tongji.edu.cn organization: Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China |
| BookMark | eNp9kMFLwzAUh4NMcJveBS8Bz51J2qTpsQ51g8Emm-CtpE26ZbTNTNLJ_Ovt3PDgwdPjPX7fe7xvAHqNaRQAtxiNMEbJwypdjAgieBQihmhCLkAfU8oDQgjugT5CmAcJYe9XYODctmsjHkV9UKZwcsitlvC1FY1v6-BRbcReSbgQ1uuiUnD5KWwN5zuva_0lvDYNTKu1sdpvalgaC5em2utmDafNXlnXAYXwXtnjaGFNXqnaXYPLUlRO3ZzrELw9P63Gk2A2f5mO01lQkAT7QBCGGJd5zsMk5pKxErGEca7iMueyCDmPcESxwLmkseRlhFFcMMq4iAupUBgOwf1p786aj1Y5n21Na5vuZEa6WBxzinmXYqdUYY1zVpVZof3PZ94KXWUYZUenWec0OzrNzk47EP0Bd1bXwh7-Q-5OiFZK_caTkIWUJuE3wFiD9Q |
| CODEN | IETPAK |
| CitedBy_id | crossref_primary_10_1002_jnm_70071 crossref_primary_10_3390_app15126490 crossref_primary_10_1109_ACCESS_2022_3226813 crossref_primary_10_1109_TAP_2023_3262299 crossref_primary_10_1007_s00500_023_08832_3 crossref_primary_10_1088_1674_1056_acd3e0 crossref_primary_10_3390_math12111639 crossref_primary_10_3390_s24185997 crossref_primary_10_3390_math13162631 crossref_primary_10_1109_ACCESS_2023_3285602 crossref_primary_10_1007_s00034_022_02268_0 crossref_primary_10_1109_LGRS_2021_3121808 crossref_primary_10_3390_app13074157 crossref_primary_10_3390_s25123774 crossref_primary_10_1109_JESTPE_2023_3343840 crossref_primary_10_1109_TGRS_2022_3206722 crossref_primary_10_1109_ACCESS_2025_3573679 crossref_primary_10_1016_j_jclepro_2022_133421 |
| Cites_doi | 10.1109/TAP.2015.2436406 10.1109/JSTARS.2016.2640274 10.1109/ICSMC.2002.1176018 10.1109/ACCESS.2014.2371994 10.1002/9781119311997 10.1109/TEVC.2004.826071 10.1109/8.402197 10.1109/TGRS.2013.2268662 10.1109/CEC.2004.1330875 10.1007/978-3-540-69052-8_41 10.1109/TAP.2016.2529641 10.1088/0266-5611/18/2/313 10.1016/j.microrel.2009.03.005 10.1109/TAP.2004.823969 10.1109/8.121595 10.1007/978-3-030-30351-8 10.1364/JOSAA.26.001022 10.1162/EVCO_a_00049 10.1109/ICACI.2015.7184720 10.1109/TMTT.2002.800427 10.1109/TGRS.2016.2622061 10.1109/TGRS.2009.2032175 10.1088/0266-5611/25/12/123003 10.1190/1.1443584 10.1109/TMTT.1982.1131357 10.1109/MAP.2011.5773566 10.1109/TAP.2006.882165 10.1109/TAP.2020.3008672 10.1109/TTHZ.2012.2210282 10.1088/0266-5611/13/6/013 10.1007/11539902_66 10.1118/1.3443569 10.1109/ACCESS.2018.2799180 10.1109/TMAG.2007.916032 10.1109/TAP.2009.2015823 10.1109/TGRS.2009.2025122 10.1016/j.jtbi.2008.05.010 10.1007/0-387-27705-6_6 10.1109/TMTT.2005.847068 10.1109/TGRS.2009.2039936 10.1109/JSTARS.2015.2466556 10.1088/0266-5611/17/6/301 10.2528/PIER03100702 10.1109/TAP.2004.830254 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TAP.2021.3060592 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 1558-2221 |
| EndPage | 5869 |
| ExternalDocumentID | 10_1109_TAP_2021_3060592 9363559 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shanghai Sailing Program grantid: 18YF1418600 – fundername: National Natural Science Foundation of China grantid: 61801293; 62071331 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c291t-a26068dbb83978d66f069688e7fb8dc38841451a1bd57d8f4107c6568a7cde033 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692232500065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-926X |
| IngestDate | Mon Jun 30 10:22:11 EDT 2025 Sat Nov 29 05:23:11 EST 2025 Tue Nov 18 22:27:42 EST 2025 Wed Aug 27 02:27:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-a26068dbb83978d66f069688e7fb8dc38841451a1bd57d8f4107c6568a7cde033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6317-1008 0000-0003-0660-2240 0000-0003-2445-8692 |
| PQID | 2568778518 |
| PQPubID | 85476 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1109_TAP_2021_3060592 ieee_primary_9363559 proquest_journals_2568778518 crossref_primary_10_1109_TAP_2021_3060592 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on antennas and propagation |
| PublicationTitleAbbrev | TAP |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 van den bergh (ref33) 2007 ref46 ref24 ref45 ref23 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 engelbrecht (ref28) 2005 ref5 ref40 eberhart (ref44) 2000; 1 |
| References_xml | – ident: ref19 doi: 10.1109/TAP.2015.2436406 – year: 2005 ident: ref28 publication-title: Fundamentals of Computational Swarm Intelligence – ident: ref32 doi: 10.1109/JSTARS.2016.2640274 – ident: ref30 doi: 10.1109/ICSMC.2002.1176018 – ident: ref5 doi: 10.1109/ACCESS.2014.2371994 – ident: ref17 doi: 10.1002/9781119311997 – ident: ref31 doi: 10.1109/TEVC.2004.826071 – ident: ref15 doi: 10.1109/8.402197 – ident: ref9 doi: 10.1109/TGRS.2013.2268662 – ident: ref34 doi: 10.1109/CEC.2004.1330875 – ident: ref38 doi: 10.1007/978-3-540-69052-8_41 – ident: ref13 doi: 10.1109/TAP.2016.2529641 – ident: ref21 doi: 10.1088/0266-5611/18/2/313 – year: 2007 ident: ref33 article-title: An analysis of particle swarm optimizers – ident: ref37 doi: 10.1016/j.microrel.2009.03.005 – ident: ref46 doi: 10.1109/TAP.2004.823969 – ident: ref16 doi: 10.1109/8.121595 – ident: ref41 doi: 10.1007/978-3-030-30351-8 – ident: ref22 doi: 10.1364/JOSAA.26.001022 – ident: ref42 doi: 10.1162/EVCO_a_00049 – ident: ref43 doi: 10.1109/ICACI.2015.7184720 – ident: ref3 doi: 10.1109/TMTT.2002.800427 – ident: ref26 doi: 10.1109/TGRS.2016.2622061 – ident: ref24 doi: 10.1109/TGRS.2009.2032175 – ident: ref18 doi: 10.1088/0266-5611/25/12/123003 – ident: ref7 doi: 10.1190/1.1443584 – ident: ref2 doi: 10.1109/TMTT.1982.1131357 – ident: ref25 doi: 10.1109/MAP.2011.5773566 – ident: ref35 doi: 10.1109/TAP.2006.882165 – ident: ref29 doi: 10.1109/TAP.2020.3008672 – ident: ref10 doi: 10.1109/TTHZ.2012.2210282 – ident: ref20 doi: 10.1088/0266-5611/13/6/013 – ident: ref40 doi: 10.1007/11539902_66 – ident: ref4 doi: 10.1118/1.3443569 – volume: 1 start-page: 84 year: 2000 ident: ref44 article-title: Comparing inertia weights and constriction factors in particle swarm optimization publication-title: Proc Congr Evol Comput (CEC) – ident: ref11 doi: 10.1109/ACCESS.2018.2799180 – ident: ref36 doi: 10.1109/TMAG.2007.916032 – ident: ref14 doi: 10.1109/TAP.2009.2015823 – ident: ref23 doi: 10.1109/TGRS.2009.2025122 – ident: ref39 doi: 10.1016/j.jtbi.2008.05.010 – ident: ref27 doi: 10.1007/0-387-27705-6_6 – ident: ref45 doi: 10.1109/TMTT.2005.847068 – ident: ref8 doi: 10.1109/TGRS.2009.2039936 – ident: ref6 doi: 10.1109/JSTARS.2015.2466556 – ident: ref47 doi: 10.1088/0266-5611/17/6/301 – ident: ref12 doi: 10.2528/PIER03100702 – ident: ref1 doi: 10.1109/TAP.2004.830254 |
| SSID | ssj0014844 |
| Score | 2.4744852 |
| Snippet | A hybrid inversion approach based on the quantum-behaved particle swarm optimization (QPSO) method is presented in this article to solve electromagnetic... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5861 |
| SubjectTerms | Computational efficiency Computing costs Cost function Electromagnetic diffraction Electromagnetic scattering Electromagnetics Evolutionary algorithms Genetic algorithms Imaging Inverse problems Inverse scattering microwave imaging Optimization Particle swarm optimization quantum-behaved particle swarm optimization (PSO) Statistics |
| Title | A Hybrid Quantum-Behaved Particle Swarm Optimization Algorithm for Solving Inverse Scattering Problems |
| URI | https://ieeexplore.ieee.org/document/9363559 https://www.proquest.com/docview/2568778518 |
| Volume | 69 |
| WOSCitedRecordID | wos000692232500065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2221 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014844 issn: 0018-926X databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8VAPPlrFapU9eBFMmyZpdvdYxNJTrbRCb2FfUaEPSVvFf-_sJi2KIngJS9gNYb99fLOz8w3AFU1jwzlNPaWijhdpSj1hlPZEbGLOJZUiFC7ZBB0M2GTChyW42cbCGGPc5TPTtEXny9cLtbZHZS0e2u2R78AOpXEeq7X1GEQsyhWX2ziBg3iycUn6vDXuDtEQDNpNpMfIJoJvW5DLqfJjIXa7S-_gf_91CPsFiyTdHPYjKJl5Ffa-aAtWoWJpZK7CXIO0S_ofNjaLPKyxK9czz-kiGk2GxdAho3eRzcg9riCzIjSTdKdPi-xl9TwjyGzJaDG1hw_EKnNkS2ygnDSnfTXMs9Isj-Gxdze-7XtFhgVPBby98gRaMzHTUiJNokzHcepbsRxmaCqZViFjkc3kK9pSd6hmaYTGokIGyARV2vhheALl-WJuToFInUaBCLSvQxlxwS3T4FIaho-ODGUdWptOT1QhP26zYEwTZ4b4PEGYEgtTUsBUh-tti9dceuOPujULy7ZegUgdGhtck2JuLhMkeYxSZJrs7PdW51Cx385vkjWgvMrW5gJ21Ruill26YfcJbmnWlw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD5k6WDpQ7s1K00vmx72MpgbXxRLegylJaVdltEM8mZ081pI4uIkLf33PZKdsLIx6IsRRsJGny7f0dH5DsAXlqdWCJYHWtNeQA1jgbTaBDK1qRCKKZlIn2yCDYd8MhGjBnzbxMJYa_3lM3vqit6Xbwq9ckdlXZG47VG8ga0epXFYRWttfAaU00pzOcIpHKeTtVMyFN1xf4SmYBydIkFGPhG_2IR8VpW_lmK_v1zsvu7P3sNOzSNJvwL-AzTsfA-2_1AX3IOWI5KVDnMb8j4ZPLnoLPJzhZ25mgVeGdEaMqoHD7l5lOWM_MA1ZFYHZ5L-9HdR3i1vZwS5Lbkppu74gThtjnKBDbQX53SvRlVemsVH-HVxPj4bBHWOhUDHIloGEu2ZlBulkCgxbtI0D51cDrcsV9zohHPqcvnKSJkeMzynaC5q5IBcMm1smCT70JwXc3sARJmcxjI2oUkUFVI4riGUshwfPZWoDnTXnZ7pWoDc5cGYZt4QCUWGMGUOpqyGqQNfNy3uK_GN_9RtO1g29WpEOnC8xjWrZ-ciQ5rHGUOuyQ__3eozvBuMv19n15fDqyNoue9U98qOobksV_YE3uoHRLD85IfgM79N2d4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Quantum-Behaved+Particle+Swarm+Optimization+Algorithm+for+Solving+Inverse+Scattering+Problems&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Yang%2C+Chun+Xia&rft.au=Zhang%2C+Jian&rft.au=Tong%2C+Mei+Song&rft.date=2021-09-01&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=69&rft.issue=9&rft.spage=5861&rft.epage=5869&rft_id=info:doi/10.1109%2FTAP.2021.3060592&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAP_2021_3060592 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |