A Hybrid Quantum-Behaved Particle Swarm Optimization Algorithm for Solving Inverse Scattering Problems

A hybrid inversion approach based on the quantum-behaved particle swarm optimization (QPSO) method is presented in this article to solve electromagnetic inverse problems. Inverse scattering problems are ill-posed and are often transformed into optimization problems by defining a suitable cost functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation Jg. 69; H. 9; S. 5861 - 5869
Hauptverfasser: Yang, Chun Xia, Zhang, Jian, Tong, Mei Song
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-926X, 1558-2221
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A hybrid inversion approach based on the quantum-behaved particle swarm optimization (QPSO) method is presented in this article to solve electromagnetic inverse problems. Inverse scattering problems are ill-posed and are often transformed into optimization problems by defining a suitable cost function, which can be minimized by evolutionary algorithms. This article is aimed at assessing the effectiveness of a customized QPSO in reconstructing 2-D dielectric scatterers. The bottleneck that restricts the application of the evolutionary algorithm in large-scale optimization problems is its computational cost. In this article, the diffraction tomographic image is used as an initial guess for the QPSO. Moreover, a weighted mean best position according to the fitness values of the particles is introduced to expand the contribution of excellent particles on population evolution. This hybrid approach, denoted as HQPSO, makes full use of the complementary advantages of linear reconstruction algorithms and stochastic optimization algorithms and is, thus, able to ensure accuracy and improve computational efficiency. Numerical experiments for different types of dielectric objects are performed with synthetic and experimental inverse-scattering data.
AbstractList A hybrid inversion approach based on the quantum-behaved particle swarm optimization (QPSO) method is presented in this article to solve electromagnetic inverse problems. Inverse scattering problems are ill-posed and are often transformed into optimization problems by defining a suitable cost function, which can be minimized by evolutionary algorithms. This article is aimed at assessing the effectiveness of a customized QPSO in reconstructing 2-D dielectric scatterers. The bottleneck that restricts the application of the evolutionary algorithm in large-scale optimization problems is its computational cost. In this article, the diffraction tomographic image is used as an initial guess for the QPSO. Moreover, a weighted mean best position according to the fitness values of the particles is introduced to expand the contribution of excellent particles on population evolution. This hybrid approach, denoted as HQPSO, makes full use of the complementary advantages of linear reconstruction algorithms and stochastic optimization algorithms and is, thus, able to ensure accuracy and improve computational efficiency. Numerical experiments for different types of dielectric objects are performed with synthetic and experimental inverse-scattering data.
Author Yang, Chun Xia
Zhang, Jian
Tong, Mei Song
Author_xml – sequence: 1
  givenname: Chun Xia
  orcidid: 0000-0003-2445-8692
  surname: Yang
  fullname: Yang, Chun Xia
  email: chunxiay@shnu.edu.cn
  organization: Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai Normal University, Shanghai, China
– sequence: 2
  givenname: Jian
  orcidid: 0000-0003-0660-2240
  surname: Zhang
  fullname: Zhang, Jian
  organization: Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
– sequence: 3
  givenname: Mei Song
  orcidid: 0000-0001-6317-1008
  surname: Tong
  fullname: Tong, Mei Song
  email: mstong@tongji.edu.cn
  organization: Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
BookMark eNp9kMFLwzAUh4NMcJveBS8Bz51J2qTpsQ51g8Emm-CtpE26ZbTNTNLJ_Ovt3PDgwdPjPX7fe7xvAHqNaRQAtxiNMEbJwypdjAgieBQihmhCLkAfU8oDQgjugT5CmAcJYe9XYODctmsjHkV9UKZwcsitlvC1FY1v6-BRbcReSbgQ1uuiUnD5KWwN5zuva_0lvDYNTKu1sdpvalgaC5em2utmDafNXlnXAYXwXtnjaGFNXqnaXYPLUlRO3ZzrELw9P63Gk2A2f5mO01lQkAT7QBCGGJd5zsMk5pKxErGEca7iMueyCDmPcESxwLmkseRlhFFcMMq4iAupUBgOwf1p786aj1Y5n21Na5vuZEa6WBxzinmXYqdUYY1zVpVZof3PZ94KXWUYZUenWec0OzrNzk47EP0Bd1bXwh7-Q-5OiFZK_caTkIWUJuE3wFiD9Q
CODEN IETPAK
CitedBy_id crossref_primary_10_1002_jnm_70071
crossref_primary_10_3390_app15126490
crossref_primary_10_1109_ACCESS_2022_3226813
crossref_primary_10_1109_TAP_2023_3262299
crossref_primary_10_1007_s00500_023_08832_3
crossref_primary_10_1088_1674_1056_acd3e0
crossref_primary_10_3390_math12111639
crossref_primary_10_3390_s24185997
crossref_primary_10_3390_math13162631
crossref_primary_10_1109_ACCESS_2023_3285602
crossref_primary_10_1007_s00034_022_02268_0
crossref_primary_10_1109_LGRS_2021_3121808
crossref_primary_10_3390_app13074157
crossref_primary_10_3390_s25123774
crossref_primary_10_1109_JESTPE_2023_3343840
crossref_primary_10_1109_TGRS_2022_3206722
crossref_primary_10_1109_ACCESS_2025_3573679
crossref_primary_10_1016_j_jclepro_2022_133421
Cites_doi 10.1109/TAP.2015.2436406
10.1109/JSTARS.2016.2640274
10.1109/ICSMC.2002.1176018
10.1109/ACCESS.2014.2371994
10.1002/9781119311997
10.1109/TEVC.2004.826071
10.1109/8.402197
10.1109/TGRS.2013.2268662
10.1109/CEC.2004.1330875
10.1007/978-3-540-69052-8_41
10.1109/TAP.2016.2529641
10.1088/0266-5611/18/2/313
10.1016/j.microrel.2009.03.005
10.1109/TAP.2004.823969
10.1109/8.121595
10.1007/978-3-030-30351-8
10.1364/JOSAA.26.001022
10.1162/EVCO_a_00049
10.1109/ICACI.2015.7184720
10.1109/TMTT.2002.800427
10.1109/TGRS.2016.2622061
10.1109/TGRS.2009.2032175
10.1088/0266-5611/25/12/123003
10.1190/1.1443584
10.1109/TMTT.1982.1131357
10.1109/MAP.2011.5773566
10.1109/TAP.2006.882165
10.1109/TAP.2020.3008672
10.1109/TTHZ.2012.2210282
10.1088/0266-5611/13/6/013
10.1007/11539902_66
10.1118/1.3443569
10.1109/ACCESS.2018.2799180
10.1109/TMAG.2007.916032
10.1109/TAP.2009.2015823
10.1109/TGRS.2009.2025122
10.1016/j.jtbi.2008.05.010
10.1007/0-387-27705-6_6
10.1109/TMTT.2005.847068
10.1109/TGRS.2009.2039936
10.1109/JSTARS.2015.2466556
10.1088/0266-5611/17/6/301
10.2528/PIER03100702
10.1109/TAP.2004.830254
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2021.3060592
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1558-2221
EndPage 5869
ExternalDocumentID 10_1109_TAP_2021_3060592
9363559
Genre orig-research
GrantInformation_xml – fundername: Shanghai Sailing Program
  grantid: 18YF1418600
– fundername: National Natural Science Foundation of China
  grantid: 61801293; 62071331
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-a26068dbb83978d66f069688e7fb8dc38841451a1bd57d8f4107c6568a7cde033
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692232500065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Mon Jun 30 10:22:11 EDT 2025
Sat Nov 29 05:23:11 EST 2025
Tue Nov 18 22:27:42 EST 2025
Wed Aug 27 02:27:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a26068dbb83978d66f069688e7fb8dc38841451a1bd57d8f4107c6568a7cde033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6317-1008
0000-0003-0660-2240
0000-0003-2445-8692
PQID 2568778518
PQPubID 85476
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TAP_2021_3060592
ieee_primary_9363559
proquest_journals_2568778518
crossref_primary_10_1109_TAP_2021_3060592
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
van den bergh (ref33) 2007
ref46
ref24
ref45
ref23
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
engelbrecht (ref28) 2005
ref5
ref40
eberhart (ref44) 2000; 1
References_xml – ident: ref19
  doi: 10.1109/TAP.2015.2436406
– year: 2005
  ident: ref28
  publication-title: Fundamentals of Computational Swarm Intelligence
– ident: ref32
  doi: 10.1109/JSTARS.2016.2640274
– ident: ref30
  doi: 10.1109/ICSMC.2002.1176018
– ident: ref5
  doi: 10.1109/ACCESS.2014.2371994
– ident: ref17
  doi: 10.1002/9781119311997
– ident: ref31
  doi: 10.1109/TEVC.2004.826071
– ident: ref15
  doi: 10.1109/8.402197
– ident: ref9
  doi: 10.1109/TGRS.2013.2268662
– ident: ref34
  doi: 10.1109/CEC.2004.1330875
– ident: ref38
  doi: 10.1007/978-3-540-69052-8_41
– ident: ref13
  doi: 10.1109/TAP.2016.2529641
– ident: ref21
  doi: 10.1088/0266-5611/18/2/313
– year: 2007
  ident: ref33
  article-title: An analysis of particle swarm optimizers
– ident: ref37
  doi: 10.1016/j.microrel.2009.03.005
– ident: ref46
  doi: 10.1109/TAP.2004.823969
– ident: ref16
  doi: 10.1109/8.121595
– ident: ref41
  doi: 10.1007/978-3-030-30351-8
– ident: ref22
  doi: 10.1364/JOSAA.26.001022
– ident: ref42
  doi: 10.1162/EVCO_a_00049
– ident: ref43
  doi: 10.1109/ICACI.2015.7184720
– ident: ref3
  doi: 10.1109/TMTT.2002.800427
– ident: ref26
  doi: 10.1109/TGRS.2016.2622061
– ident: ref24
  doi: 10.1109/TGRS.2009.2032175
– ident: ref18
  doi: 10.1088/0266-5611/25/12/123003
– ident: ref7
  doi: 10.1190/1.1443584
– ident: ref2
  doi: 10.1109/TMTT.1982.1131357
– ident: ref25
  doi: 10.1109/MAP.2011.5773566
– ident: ref35
  doi: 10.1109/TAP.2006.882165
– ident: ref29
  doi: 10.1109/TAP.2020.3008672
– ident: ref10
  doi: 10.1109/TTHZ.2012.2210282
– ident: ref20
  doi: 10.1088/0266-5611/13/6/013
– ident: ref40
  doi: 10.1007/11539902_66
– ident: ref4
  doi: 10.1118/1.3443569
– volume: 1
  start-page: 84
  year: 2000
  ident: ref44
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
  publication-title: Proc Congr Evol Comput (CEC)
– ident: ref11
  doi: 10.1109/ACCESS.2018.2799180
– ident: ref36
  doi: 10.1109/TMAG.2007.916032
– ident: ref14
  doi: 10.1109/TAP.2009.2015823
– ident: ref23
  doi: 10.1109/TGRS.2009.2025122
– ident: ref39
  doi: 10.1016/j.jtbi.2008.05.010
– ident: ref27
  doi: 10.1007/0-387-27705-6_6
– ident: ref45
  doi: 10.1109/TMTT.2005.847068
– ident: ref8
  doi: 10.1109/TGRS.2009.2039936
– ident: ref6
  doi: 10.1109/JSTARS.2015.2466556
– ident: ref47
  doi: 10.1088/0266-5611/17/6/301
– ident: ref12
  doi: 10.2528/PIER03100702
– ident: ref1
  doi: 10.1109/TAP.2004.830254
SSID ssj0014844
Score 2.4744852
Snippet A hybrid inversion approach based on the quantum-behaved particle swarm optimization (QPSO) method is presented in this article to solve electromagnetic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5861
SubjectTerms Computational efficiency
Computing costs
Cost function
Electromagnetic diffraction
Electromagnetic scattering
Electromagnetics
Evolutionary algorithms
Genetic algorithms
Imaging
Inverse problems
Inverse scattering
microwave imaging
Optimization
Particle swarm optimization
quantum-behaved particle swarm optimization (PSO)
Statistics
Title A Hybrid Quantum-Behaved Particle Swarm Optimization Algorithm for Solving Inverse Scattering Problems
URI https://ieeexplore.ieee.org/document/9363559
https://www.proquest.com/docview/2568778518
Volume 69
WOSCitedRecordID wos000692232500065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8VAPPlrFapU9eBFMmyZpdvdYxNJTrbRCb2FfUaEPSVvFf-_sJi2KIngJS9gNYb99fLOz8w3AFU1jwzlNPaWijhdpSj1hlPZEbGLOJZUiFC7ZBB0M2GTChyW42cbCGGPc5TPTtEXny9cLtbZHZS0e2u2R78AOpXEeq7X1GEQsyhWX2ziBg3iycUn6vDXuDtEQDNpNpMfIJoJvW5DLqfJjIXa7S-_gf_91CPsFiyTdHPYjKJl5Ffa-aAtWoWJpZK7CXIO0S_ofNjaLPKyxK9czz-kiGk2GxdAho3eRzcg9riCzIjSTdKdPi-xl9TwjyGzJaDG1hw_EKnNkS2ygnDSnfTXMs9Isj-Gxdze-7XtFhgVPBby98gRaMzHTUiJNokzHcepbsRxmaCqZViFjkc3kK9pSd6hmaYTGokIGyARV2vhheALl-WJuToFInUaBCLSvQxlxwS3T4FIaho-ODGUdWptOT1QhP26zYEwTZ4b4PEGYEgtTUsBUh-tti9dceuOPujULy7ZegUgdGhtck2JuLhMkeYxSZJrs7PdW51Cx385vkjWgvMrW5gJ21Ruill26YfcJbmnWlw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD5k6WDpQ7s1K00vmx72MpgbXxRLegylJaVdltEM8mZ081pI4uIkLf33PZKdsLIx6IsRRsJGny7f0dH5DsAXlqdWCJYHWtNeQA1jgbTaBDK1qRCKKZlIn2yCDYd8MhGjBnzbxMJYa_3lM3vqit6Xbwq9ckdlXZG47VG8ga0epXFYRWttfAaU00pzOcIpHKeTtVMyFN1xf4SmYBydIkFGPhG_2IR8VpW_lmK_v1zsvu7P3sNOzSNJvwL-AzTsfA-2_1AX3IOWI5KVDnMb8j4ZPLnoLPJzhZ25mgVeGdEaMqoHD7l5lOWM_MA1ZFYHZ5L-9HdR3i1vZwS5Lbkppu74gThtjnKBDbQX53SvRlVemsVH-HVxPj4bBHWOhUDHIloGEu2ZlBulkCgxbtI0D51cDrcsV9zohHPqcvnKSJkeMzynaC5q5IBcMm1smCT70JwXc3sARJmcxjI2oUkUFVI4riGUshwfPZWoDnTXnZ7pWoDc5cGYZt4QCUWGMGUOpqyGqQNfNy3uK_GN_9RtO1g29WpEOnC8xjWrZ-ciQ5rHGUOuyQ__3eozvBuMv19n15fDqyNoue9U98qOobksV_YE3uoHRLD85IfgM79N2d4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Quantum-Behaved+Particle+Swarm+Optimization+Algorithm+for+Solving+Inverse+Scattering+Problems&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Yang%2C+Chun+Xia&rft.au=Zhang%2C+Jian&rft.au=Tong%2C+Mei+Song&rft.date=2021-09-01&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=69&rft.issue=9&rft.spage=5861&rft.epage=5869&rft_id=info:doi/10.1109%2FTAP.2021.3060592&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAP_2021_3060592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon