Max-Min Fair Energy-Efficient Beamforming Design for Intelligent Reflecting Surface-Aided SWIPT Systems With Non-Linear Energy Harvesting Model
This paper considers an intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users decode data and harvest energy from the transmitted signal of a transmitter. The proposed design framework exploits the cost-effective IRS to...
Uloženo v:
| Vydáno v: | IEEE transactions on vehicular technology Ročník 70; číslo 6; s. 5848 - 5864 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper considers an intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users decode data and harvest energy from the transmitted signal of a transmitter. The proposed design framework exploits the cost-effective IRS to establish favorable communication environment to improve the fair energy efficient. In particular, we study the max-min energy efficiency (EE) of the system by jointly designing the transmit information and energy beamforming at the base station (BS), phase shifts at the IRS, as well as the power splitting (PS) ratio at all users subject to the minimum rate, minimum harvested energy, and transmit power constraints. The formulated problem is non-convex and thus challenging to be solved. We propose two algorithms namely penalty-based and inner approximation (IA)-based to handle the non-convexity of the optimization problem. As such, we divide the original problem into two sub-problems and apply the alternating optimization (AO) algorithm for both proposed algorithms to handle it iteratively. In particular, in the penalty-based algorithm for the first sub-problem, the semi-definite relaxation (SDR) technique, difference of convex functions (DC) programming, majorization-minimization (MM) approach, and fractional programming theory are exploited to transform the non-convex optimization problem into a convex form that can be addressed efficiently. For the second sub-problem, a penalty-based approach is proposed to handle the optimization on the phase shifts introduced by the IRS with the proposed algorithms. For the IA-based method, we jointly optimize beamforming vectors and phase shifts while the PS ratio is solved optimally in the first sub-problem. Simulation results verify the effectiveness of the IRS, which can significantly improve the system EE as compared to conventional benchmark schemes and also unveil a trade-off between convergence and performance gain for the two proposed algorithms. |
|---|---|
| AbstractList | This paper considers an intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users decode data and harvest energy from the transmitted signal of a transmitter. The proposed design framework exploits the cost-effective IRS to establish favorable communication environment to improve the fair energy efficient. In particular, we study the max-min energy efficiency (EE) of the system by jointly designing the transmit information and energy beamforming at the base station (BS), phase shifts at the IRS, as well as the power splitting (PS) ratio at all users subject to the minimum rate, minimum harvested energy, and transmit power constraints. The formulated problem is non-convex and thus challenging to be solved. We propose two algorithms namely penalty-based and inner approximation (IA)-based to handle the non-convexity of the optimization problem. As such, we divide the original problem into two sub-problems and apply the alternating optimization (AO) algorithm for both proposed algorithms to handle it iteratively. In particular, in the penalty-based algorithm for the first sub-problem, the semi-definite relaxation (SDR) technique, difference of convex functions (DC) programming, majorization-minimization (MM) approach, and fractional programming theory are exploited to transform the non-convex optimization problem into a convex form that can be addressed efficiently. For the second sub-problem, a penalty-based approach is proposed to handle the optimization on the phase shifts introduced by the IRS with the proposed algorithms. For the IA-based method, we jointly optimize beamforming vectors and phase shifts while the PS ratio is solved optimally in the first sub-problem. Simulation results verify the effectiveness of the IRS, which can significantly improve the system EE as compared to conventional benchmark schemes and also unveil a trade-off between convergence and performance gain for the two proposed algorithms. This paper considers an intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users decode data and harvest energy from the transmitted signal of a transmitter. The proposed design framework exploits the cost-effective IRS to establish favorable communication environment to improve the fair energy efficient. In particular, we study the max-min energy efficiency (EE) of the system by jointly designing the transmit information and energy beamforming at the base station (BS), phase shifts at the IRS, as well as the power splitting (PS) ratio at all users subject to the minimum rate, minimum harvested energy, and transmit power constraints. The formulated problem is non-convex and thus challenging to be solved. We propose two algorithms namely penalty-based and inner approximation (IA)-based to handle the non-convexity of the optimization problem. As such, we divide the original problem into two sub-problems and apply the alternating optimization (AO) algorithm for both proposed algorithms to handle it iteratively. In particular, in the penalty-based algorithm for the first sub-problem, the semi-definite relaxation (SDR) technique, difference of convex functions (DC) programming, majorization-minimization (MM) approach, and fractional programming theory are exploited to transform the non-convex optimization problem into a convex form that can be addressed efficiently. For the second sub-problem, a penalty-based approach is proposed to handle the optimization on the phase shifts introduced by the IRS with the proposed algorithms. For the IA-based method, we jointly optimize beamforming vectors and phase shifts while the PS ratio is solved optimally in the first sub-problem. Simulation results verify the effectiveness of the IRS, which can significantly improve the system EE as compared to conventional benchmark schemes and also unveil a trade-off between convergence and performance gain for the two proposed algorithms. |
| Author | Wu, Qingqing Robat Mili, Mohammad Ng, Derrick Wing Kwan Zargari, Shayan Khalili, Ata |
| Author_xml | – sequence: 1 givenname: Shayan orcidid: 0000-0003-1660-4733 surname: Zargari fullname: Zargari, Shayan email: shayanzargari66@gmail.com organization: School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran – sequence: 2 givenname: Ata orcidid: 0000-0002-3845-1144 surname: Khalili fullname: Khalili, Ata email: ata.khalili@ieee.org organization: Electronics Research Institute, Sharif University of Technology, Tehran, Iran – sequence: 3 givenname: Qingqing orcidid: 0000-0002-0043-3266 surname: Wu fullname: Wu, Qingqing email: qingqingwu@um.edu.mo organization: State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau, China – sequence: 4 givenname: Mohammad orcidid: 0000-0003-4120-1872 surname: Robat Mili fullname: Robat Mili, Mohammad email: mohammad.robatmili@gmail.com organization: Electronics Research Institute, Sharif University of Technology, Tehran, Iran – sequence: 5 givenname: Derrick Wing Kwan orcidid: 0000-0001-6400-712X surname: Ng fullname: Ng, Derrick Wing Kwan email: w.k.ng@unsw.edu.au organization: School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, Australia |
| BookMark | eNp9kE1v00AQhleoSKSFOxKXlThv2A-v7Tm2JW0jJYBIoEdrYo_DVs663d1U5Ff0L9dpWg49cBq90vPMjN5jduR7T4x9VHKslIQvy9_LsZZajY0siqwo3rCRAgMCjIUjNpJSlQJsZt-x4xhvhphloEbsYY5_xdx5foEu8ImnsN6JSdu62pFP_Ixw0_Zh4_yaf6Xo1p4PkU99oq5z6z3yk9qO6rQnFtvQYk3i1DXU8MX19MeSL3Yx0Sbya5f-8G-9FzPnCV9O8SsM9xSf7HnfUPeevW2xi_TheZ6wXxeT5fmVmH2_nJ6fzkStQSWB2q4k5AhkgRCLZiUbXZPJLDWwMqVWqgWZl6hUgxq1KXIoa1VKQwoLuTIn7PNh723o77bDB9VNvw1-OFlpm0FhS21goPIDVYc-xkBtVbuEyfU-BXRdpWS1L78ayq_25VfP5Q-ifCXeBrfBsPuf8umgOCL6h0OmTW61eQSehZJc |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1109_TWC_2023_3348292 crossref_primary_10_1155_2022_5498172 crossref_primary_10_1109_JIOT_2022_3142850 crossref_primary_10_1109_TVT_2024_3371539 crossref_primary_10_1109_TWC_2021_3126802 crossref_primary_10_1016_j_dsp_2025_105338 crossref_primary_10_1109_LCOMM_2023_3328782 crossref_primary_10_1049_cmu2_12431 crossref_primary_10_1109_LCOMM_2023_3288483 crossref_primary_10_1109_TMC_2022_3177454 crossref_primary_10_1109_TVT_2021_3133825 crossref_primary_10_1109_TVT_2022_3222917 crossref_primary_10_1109_JIOT_2023_3278238 crossref_primary_10_1109_JSEN_2024_3354734 crossref_primary_10_1109_TVT_2024_3473608 crossref_primary_10_1109_JIOT_2022_3174002 crossref_primary_10_4218_etrij_2023_0418 crossref_primary_10_1109_ACCESS_2023_3278985 crossref_primary_10_1109_JIOT_2022_3216449 crossref_primary_10_1109_TWC_2023_3318795 crossref_primary_10_1109_JIOT_2023_3347623 crossref_primary_10_1109_JSYST_2024_3365590 crossref_primary_10_1016_j_icte_2023_06_003 crossref_primary_10_1109_TCOMM_2023_3296631 crossref_primary_10_1109_TVT_2023_3278698 crossref_primary_10_1007_s11235_022_00918_x crossref_primary_10_3390_s22197260 crossref_primary_10_1109_LCOMM_2022_3171966 crossref_primary_10_1109_JIOT_2023_3338618 crossref_primary_10_1016_j_phycom_2023_102193 crossref_primary_10_1049_ell2_13291 crossref_primary_10_1109_TNSM_2024_3395298 crossref_primary_10_1109_TCOMM_2023_3270907 crossref_primary_10_1109_TVT_2023_3266424 crossref_primary_10_1109_JSEN_2021_3135449 crossref_primary_10_1007_s11276_022_02938_6 crossref_primary_10_3390_s23115117 crossref_primary_10_1109_TVT_2024_3483952 crossref_primary_10_1109_JSTSP_2022_3179840 crossref_primary_10_1109_TCOMM_2023_3298984 crossref_primary_10_1109_TVT_2022_3215627 crossref_primary_10_1109_JIOT_2023_3241168 crossref_primary_10_1016_j_sigpro_2022_108649 crossref_primary_10_1109_TIFS_2024_3430549 crossref_primary_10_1109_TVT_2024_3422276 crossref_primary_10_1109_JIOT_2022_3195927 crossref_primary_10_1109_TWC_2022_3193845 crossref_primary_10_1109_LWC_2021_3124916 crossref_primary_10_1002_cpe_8098 crossref_primary_10_1109_LCOMM_2022_3204489 crossref_primary_10_1109_TMTT_2024_3492392 crossref_primary_10_1109_TVT_2022_3207700 crossref_primary_10_1109_TWC_2025_3528959 crossref_primary_10_1007_s13369_024_09695_y crossref_primary_10_1109_TCOMM_2022_3161688 crossref_primary_10_1109_TWC_2022_3181822 crossref_primary_10_1109_TCOMM_2022_3141798 crossref_primary_10_1038_s41598_022_26853_0 crossref_primary_10_1109_ACCESS_2021_3107316 crossref_primary_10_1109_JPROC_2021_3121790 crossref_primary_10_1109_TWC_2023_3321959 crossref_primary_10_1109_LWC_2021_3109642 crossref_primary_10_1109_ACCESS_2023_3341416 crossref_primary_10_1109_JIOT_2022_3162761 crossref_primary_10_1109_TCOMM_2024_3354200 crossref_primary_10_1109_TCOMM_2022_3148425 crossref_primary_10_1109_TVT_2023_3255235 crossref_primary_10_1109_JSYST_2022_3186964 crossref_primary_10_1109_LWC_2022_3161410 crossref_primary_10_3390_fi16010020 crossref_primary_10_1109_JPROC_2024_3395178 crossref_primary_10_1109_TCCN_2024_3431889 crossref_primary_10_1109_JIOT_2024_3369687 crossref_primary_10_1109_TGCN_2024_3370555 crossref_primary_10_1109_JIOT_2023_3325362 crossref_primary_10_1109_TWC_2021_3132666 crossref_primary_10_1109_LWC_2022_3187671 crossref_primary_10_1109_OJCOMS_2025_3570094 crossref_primary_10_1109_TWC_2023_3327502 crossref_primary_10_1109_TVT_2023_3234724 crossref_primary_10_1109_JIOT_2023_3313197 crossref_primary_10_1109_LWC_2022_3164257 |
| Cites_doi | 10.1017/CBO9780511804441 10.1109/TSP.2016.2601299 10.1038/s41467-018-06802-0 10.1109/LWC.2019.2961656 10.1109/ACCESS.2019.2935192 10.1109/WCNC45663.2020.9120543 10.1109/JSAC.2016.2550338 10.1109/COMST.2016.2594120 10.1109/TCOMM.2013.13.120855 10.1109/TWC.2018.2865313 10.1109/LWC.2020.3037750 10.1109/MCOM.001.1900107 10.1287/mnsc.13.7.492 10.1109/LCOMM.2020.2979709 10.1109/TWC.2013.031813.120224 10.1109/TCOMM.2020.3001125 10.1109/TWC.2013.103113.130470 10.1109/LCOMM.2015.2478460 10.1109/TCOMM.2019.2958916 10.1109/JSAC.2018.2872615 10.1109/JIOT.2020.2996984 10.1109/TSP.2017.2673813 10.1109/JSAC.2020.3000802 10.1109/TWC.2014.2314654 10.1109/TCOMM.2020.3020838 10.1038/srep06693 10.1109/ICASSP.2018.8461496 10.1287/opre.26.4.681 10.1109/MWC.2017.1600343 10.1109/ICC40277.2020.9148981 10.1109/TWC.2019.2946832 10.1109/TWC.2014.041714.131688 10.1109/TSP.2020.2990098 10.1038/lsa.2014.99 10.1109/TSP.2014.2340817 10.1137/120891009 10.1109/JSAC.2020.3000807 10.1109/ICC40277.2020.9148892 10.1109/TWC.2019.2936025 10.1109/TVT.2019.2923997 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2021.3077477 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 5864 |
| ExternalDocumentID | 10_1109_TVT_2021_3077477 9423652 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Mobile Communications Research Laboratory, Southeast University grantid: 2021D15 funderid: 10.13039/501100015013 – fundername: UNSW Digital Grid Futures Institute, UNSW, Sydney – fundername: Guangdong NSF grantid: 2021A1515011900; FDCT 0108/2020/A – fundername: Australian Research Council grantid: DP210102169 funderid: 10.13039/501100000923 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-a25b096a9e59eaa7db0d2ce345ed9b38211f9068a11da2a237698c1803e1a70b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671544000053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 09:56:27 EDT 2025 Sat Nov 29 02:58:56 EST 2025 Tue Nov 18 20:25:53 EST 2025 Wed Aug 27 02:14:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-a25b096a9e59eaa7db0d2ce345ed9b38211f9068a11da2a237698c1803e1a70b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1660-4733 0000-0002-3845-1144 0000-0002-0043-3266 0000-0003-4120-1872 0000-0001-6400-712X |
| PQID | 2549758239 |
| PQPubID | 85454 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2549758239 crossref_primary_10_1109_TVT_2021_3077477 ieee_primary_9423652 crossref_citationtrail_10_1109_TVT_2021_3077477 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 guo (ref46) 2020 ref54 ref16 ref19 ref50 i (ref35) 2010 ref48 ref47 ref42 ref41 ref44 wu (ref30) 0 ref8 ref7 ref4 ref3 ref6 ref5 wu (ref9) 0 ref34 ref37 ref36 ref31 ref33 ref32 kaina (ref51) 2014; 4 ref2 huang (ref11) 0 ref1 ref39 ref38 grant (ref40) 0 khalili (ref29) 0 yu (ref17) 0 xu (ref43) 2020 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 tang (ref49) 2019 rajatheva (ref10) 2020 zhao (ref45) 2020 yu (ref18) 2020 |
| References_xml | – year: 0 ident: ref40 publication-title: CVX MATLAB Software for Disciplined Convex Programming – ident: ref36 doi: 10.1017/CBO9780511804441 – ident: ref41 doi: 10.1109/TSP.2016.2601299 – ident: ref52 doi: 10.1038/s41467-018-06802-0 – ident: ref24 doi: 10.1109/LWC.2019.2961656 – ident: ref6 doi: 10.1109/ACCESS.2019.2935192 – year: 2020 ident: ref10 article-title: White paper on broadband connectivity in 6 G – ident: ref53 doi: 10.1109/WCNC45663.2020.9120543 – ident: ref2 doi: 10.1109/JSAC.2016.2550338 – ident: ref3 doi: 10.1109/COMST.2016.2594120 – ident: ref31 doi: 10.1109/TCOMM.2013.13.120855 – ident: ref20 doi: 10.1109/TWC.2018.2865313 – year: 2020 ident: ref45 article-title: Exploiting amplitude control in intelligent reflecting surface aided wireless communication with imperfect CSI publication-title: IEEE Trans Commun – ident: ref28 doi: 10.1109/LWC.2020.3037750 – year: 0 ident: ref17 article-title: Power-efficient resource allocation for multiuser MISO systems via intelligent reflecting surfaces – year: 0 ident: ref11 article-title: Large intelligent surfaces for energy efficiency in wireless communication – ident: ref4 doi: 10.1109/MCOM.001.1900107 – year: 2020 ident: ref46 article-title: Weighted sum-rate optimization for intelligent reflecting surface enhanced wireless networks – ident: ref34 doi: 10.1287/mnsc.13.7.492 – ident: ref16 doi: 10.1109/LCOMM.2020.2979709 – ident: ref21 doi: 10.1109/TWC.2013.031813.120224 – ident: ref5 doi: 10.1109/TCOMM.2020.3001125 – ident: ref33 doi: 10.1109/TWC.2013.103113.130470 – year: 2010 ident: ref35 publication-title: Interior-point Methods for Optimization – ident: ref32 doi: 10.1109/LCOMM.2015.2478460 – ident: ref15 doi: 10.1109/TCOMM.2019.2958916 – ident: ref19 doi: 10.1109/JSAC.2018.2872615 – ident: ref39 doi: 10.1109/JIOT.2020.2996984 – ident: ref38 doi: 10.1109/TSP.2017.2673813 – ident: ref27 doi: 10.1109/JSAC.2020.3000802 – ident: ref44 doi: 10.1109/TSP.2017.2673813 – ident: ref42 doi: 10.1109/TWC.2014.2314654 – year: 2020 ident: ref43 article-title: Resource allocation for IRS-assisted full-duplex cognitive radio systems publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2020.3020838 – volume: 4 start-page: p. 6693 year: 2014 ident: ref51 article-title: Shaping complex microwave fields in reverberating media with binary tunable metasurfaces publication-title: Sci Rep doi: 10.1038/srep06693 – ident: ref12 doi: 10.1109/ICASSP.2018.8461496 – ident: ref47 doi: 10.1287/opre.26.4.681 – ident: ref1 doi: 10.1109/MWC.2017.1600343 – ident: ref54 doi: 10.1109/ICC40277.2020.9148981 – ident: ref37 doi: 10.1109/TWC.2019.2946832 – ident: ref7 doi: 10.1109/TCOMM.2019.2958916 – ident: ref23 doi: 10.1109/TWC.2014.041714.131688 – ident: ref14 doi: 10.1109/TSP.2020.2990098 – ident: ref50 doi: 10.1038/lsa.2014.99 – year: 0 ident: ref30 article-title: IRS-assisted wireless powered NOMA: Is dynamic passive beamforming really needed? – ident: ref22 doi: 10.1109/TSP.2014.2340817 – year: 2019 ident: ref49 article-title: Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement – ident: ref48 doi: 10.1137/120891009 – ident: ref25 doi: 10.1109/JSAC.2020.3000807 – ident: ref26 doi: 10.1109/ICC40277.2020.9148892 – ident: ref8 doi: 10.1109/TWC.2019.2936025 – year: 0 ident: ref9 article-title: Intelligent reflecting surface aided wireless communications: A tutorial publication-title: IEEE Trans Commun – year: 0 ident: ref29 article-title: Multi-Objective Resource Allocation for IRS-Aided SWIPT publication-title: IEEE Wireless Communications Letters – ident: ref13 doi: 10.1109/TVT.2019.2923997 – year: 2020 ident: ref18 article-title: IRS-assisted green communication systems: Provable convergence and robust optimization |
| SSID | ssj0014491 |
| Score | 2.6415534 |
| Snippet | This paper considers an intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users... This paper considers an intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5848 |
| SubjectTerms | Algorithms Array signal processing Beamforming Computational geometry Convex analysis Convexity Energy conversion efficiency Energy efficiency Energy efficiency (EE) Energy harvesting intelligent reflecting surface (IRS) Interference Mathematical programming Nonlinear systems Optimization Power transfer Programming Receivers Reconfigurable intelligent surfaces Signal to noise ratio simultaneous wireless information and power transfer (SWIPT) Wireless communication |
| Title | Max-Min Fair Energy-Efficient Beamforming Design for Intelligent Reflecting Surface-Aided SWIPT Systems With Non-Linear Energy Harvesting Model |
| URI | https://ieeexplore.ieee.org/document/9423652 https://www.proquest.com/docview/2549758239 |
| Volume | 70 |
| WOSCitedRecordID | wos000671544000053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKxQEOfBXEloJ84IKEu7ETJ_GxhV1Ria4qurS9RRN7okYqWbTNVv0X_csde70RCITELZFmnEjP9sx4xm8Ye09WSFmrtYCmyESmHAjQyghnrXXkIWQ2pAvOvhazWXlxYU622MfhLgwihuIz3PePIZfvFnblj8rGhmx_rmnDfVAU-fqu1pAxyLLYHU_SAia3YJOSTMx4fjanQFDJfZrP5D0Xv5mg0FPlj404WJfp0__7r2fsSfQi-cEa9udsC7sX7PEv3II77O4YbsVx2_EptEs-CVf8xCQQRtBg_BDhh_dXSZZ_DlUcnF750cDQ2fNv2PgzfS9xulo2YFEctA4dPz0_OpnzyHXOz9v-ks8WnaCwlpZN_BT3TYc8gwdp-35rVy_Z9-lk_umLiN0XhFVG9gKUrim-AYPaIEDh6sQpi2mm0Zk6LSlybEySlyClAwW-usaUVpZJihKKpE5fse1u0eFrxjOnZdpocDk0Wa4KkyhUtTJKuibP63rExhtAKhupyX2HjKsqhCiJqQjCykNYRQhH7MOg8XNNy_EP2R0P2SAX0RqxvQ3mVVy315UPlymCUqnZ_bvWG_bIj70uFttj2_1yhW_ZQ3vTt9fLd2FK3gNmSN8_ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELamgQQ88GsgCgP8wAsSXmPHTuLHAa1W0VYTC9veoovtiEgjRV2K-C_4lzm7bgQCIfGWSHdxpM_23fnO3xHyCq2QMEYpBk0umRQWGCihmTXGWPQQpAnpgvN5vlwWl5f6dI-8Ge7COOdC8Zk78o8hl29XZuOPysYabX-mcMO9oaQUyfa21pAzkDL2x-O4hNEx2CUlEz0uz0sMBQU_whmN_nP-mxEKXVX-2IqDfZne-78_u0_uRj-SHm-Bf0D2XPeQ3PmFXfCA_FjAd7ZoOzqFdk0n4ZIfmwTKCPwYfevgi_dYUZa-D3UcFF_pbODo7OlH1_hTfS9xtlk3YBw7bq2z9OxidlrSyHZOL9r-M12uOoaBLS6cOBT1bYc8hwdq-45rV4_Ip-mkfHfCYv8FZoTmPQOhaoxwQDulHUBu68QK41KpnNV1WmDs2OgkK4BzCwJ8fY0uDC-S1HHIkzp9TPa7VeeeECqt4mmjwGbQyEzkOhFO1EILbpssq-sRGe8AqUwkJ_c9Mq6qEKQkukIIKw9hFSEckdeDxtctMcc_ZA88ZINcRGtEDneYV3HlXlc-YMYYSqT66d-1XpJbJ-ViXs1nyw_PyG0_zrZ07JDs9-uNe05umm99e71-EabnTyf14oY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Max-Min+Fair+Energy-Efficient+Beamforming+Design+for+Intelligent+Reflecting+Surface-Aided+SWIPT+Systems+With+Non-Linear+Energy+Harvesting+Model&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zargari%2C+Shayan&rft.au=Khalili%2C+Ata&rft.au=Wu%2C+Qingqing&rft.au=Mohammad+Robat+Mili&rft.date=2021-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=70&rft.issue=6&rft.spage=5848&rft_id=info:doi/10.1109%2FTVT.2021.3077477&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |