Quantum Algorithm for Fidelity Estimation
For two unknown mixed quantum states <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> in an <inline-formula> <...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 69; H. 1; S. 273 - 282 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | For two unknown mixed quantum states <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> in an <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula>-dimensional Hilbert space, computing their fidelity <inline-formula> <tex-math notation="LaTeX">F(\rho,\sigma) </tex-math></inline-formula> is a basic problem with many important applications in quantum computing and quantum information, for example verification and characterization of the outputs of a quantum computer, and design and analysis of quantum algorithms. In this paper, we propose a quantum algorithm that solves this problem in <inline-formula> <tex-math notation="LaTeX">{\mathrm{ poly}}(\log (N), r, 1/\varepsilon) </tex-math></inline-formula> time, where <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> is the lower rank of <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> is the desired precision, provided that the purifications of <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> are prepared by quantum oracles. This algorithm exhibits an exponential speedup over the best known algorithm (based on quantum state tomography) which has time complexity polynomial in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula>. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2022.3203985 |