Quantum Algorithm for Fidelity Estimation

For two unknown mixed quantum states <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> in an <inline-formula> <...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 69; číslo 1; s. 273 - 282
Hlavní autoři: Wang, Qisheng, Zhang, Zhicheng, Chen, Kean, Guan, Ji, Fang, Wang, Liu, Junyi, Ying, Mingsheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract For two unknown mixed quantum states <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> in an <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula>-dimensional Hilbert space, computing their fidelity <inline-formula> <tex-math notation="LaTeX">F(\rho,\sigma) </tex-math></inline-formula> is a basic problem with many important applications in quantum computing and quantum information, for example verification and characterization of the outputs of a quantum computer, and design and analysis of quantum algorithms. In this paper, we propose a quantum algorithm that solves this problem in <inline-formula> <tex-math notation="LaTeX">{\mathrm{ poly}}(\log (N), r, 1/\varepsilon) </tex-math></inline-formula> time, where <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> is the lower rank of <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> is the desired precision, provided that the purifications of <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> are prepared by quantum oracles. This algorithm exhibits an exponential speedup over the best known algorithm (based on quantum state tomography) which has time complexity polynomial in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula>.
AbstractList For two unknown mixed quantum states <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> in an <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula>-dimensional Hilbert space, computing their fidelity <inline-formula> <tex-math notation="LaTeX">F(\rho,\sigma) </tex-math></inline-formula> is a basic problem with many important applications in quantum computing and quantum information, for example verification and characterization of the outputs of a quantum computer, and design and analysis of quantum algorithms. In this paper, we propose a quantum algorithm that solves this problem in <inline-formula> <tex-math notation="LaTeX">{\mathrm{ poly}}(\log (N), r, 1/\varepsilon) </tex-math></inline-formula> time, where <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> is the lower rank of <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula> is the desired precision, provided that the purifications of <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> are prepared by quantum oracles. This algorithm exhibits an exponential speedup over the best known algorithm (based on quantum state tomography) which has time complexity polynomial in <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula>.
For two unknown mixed quantum states [Formula Omitted] and [Formula Omitted] in an [Formula Omitted]-dimensional Hilbert space, computing their fidelity [Formula Omitted] is a basic problem with many important applications in quantum computing and quantum information, for example verification and characterization of the outputs of a quantum computer, and design and analysis of quantum algorithms. In this paper, we propose a quantum algorithm that solves this problem in [Formula Omitted] time, where [Formula Omitted] is the lower rank of [Formula Omitted] and [Formula Omitted], and [Formula Omitted] is the desired precision, provided that the purifications of [Formula Omitted] and [Formula Omitted] are prepared by quantum oracles. This algorithm exhibits an exponential speedup over the best known algorithm (based on quantum state tomography) which has time complexity polynomial in [Formula Omitted].
Author Wang, Qisheng
Zhang, Zhicheng
Liu, Junyi
Guan, Ji
Chen, Kean
Fang, Wang
Ying, Mingsheng
Author_xml – sequence: 1
  givenname: Qisheng
  orcidid: 0000-0001-5107-8279
  surname: Wang
  fullname: Wang, Qisheng
  email: qishengwang1994@gmail.com
  organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Zhicheng
  orcidid: 0000-0002-7436-0426
  surname: Zhang
  fullname: Zhang, Zhicheng
  email: iszczhang@gmail.com
  organization: Centre for Quantum Software and Information, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 3
  givenname: Kean
  orcidid: 0000-0002-0772-6635
  surname: Chen
  fullname: Chen, Kean
  email: chenka@ios.ac.cn
  organization: State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Ji
  orcidid: 0000-0002-3490-0029
  surname: Guan
  fullname: Guan, Ji
  email: guanj@ios.ac.cn
  organization: State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Wang
  orcidid: 0000-0001-7628-1185
  surname: Fang
  fullname: Fang, Wang
  email: fangw@ios.ac.cn
  organization: State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Junyi
  orcidid: 0000-0001-5715-4885
  surname: Liu
  fullname: Liu, Junyi
  email: liujy@ios.ac.cn
  organization: State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Mingsheng
  orcidid: 0000-0003-4847-702X
  surname: Ying
  fullname: Ying, Mingsheng
  email: yingms@ios.ac.cn
  organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China
BookMark eNp9kM1LAzEQxYNUsK3eBS8Lnjxszfcmx1JaLRREqOeQTbKast3UJHvof-_WigcPnoaB95v35k3AqAudA-AWwRlCUD5u19sZhhjPCIZECnYBxoixqpSc0REYQ4hEKSkVV2CS0m5YKUN4DB5ee93lfl_M2_cQff7YF02Ixcpb1_p8LJYp-73OPnTX4LLRbXI3P3MK3lbL7eK53Lw8rRfzTWmwRLnUkHAusKi5JFhyCavaUiaMRLY2QtfcOGIZ1ZhRbGmjKUVON7XFzjlrNCNTcH--e4jhs3cpq13oYzdYKlyxCgkk8UkFzyoTQ0rRNeoQh6DxqBBUp0LUUIg6FaJ-ChkQ_gcxPn-_lqP27X_g3Rn0Q8ZfHykqRhgmXxVabpQ
CODEN IETTAW
CitedBy_id crossref_primary_10_1088_1572_9494_ad5664
crossref_primary_10_1088_1612_202X_acee63
crossref_primary_10_1109_TIT_2024_3447915
crossref_primary_10_1007_s11128_023_03961_y
crossref_primary_10_1109_TIT_2024_3382037
crossref_primary_10_1371_journal_pone_0302325
crossref_primary_10_1007_JHEP02_2025_081
crossref_primary_10_1103_PhysRevResearch_6_043034
crossref_primary_10_3390_stats8010020
crossref_primary_10_1103_PhysRevA_108_012409
crossref_primary_10_1007_s11128_024_04338_5
crossref_primary_10_1038_s41534_025_00973_7
crossref_primary_10_1109_TIT_2023_3321121
crossref_primary_10_1002_qute_202500022
crossref_primary_10_1103_blvt_zrww
crossref_primary_10_1109_TIT_2024_3393756
crossref_primary_10_1109_TIT_2024_3482168
crossref_primary_10_1007_JHEP01_2025_122
crossref_primary_10_1109_TIT_2024_3399014
Cites_doi 10.1103/PhysRevLett.79.2586
10.1109/TIT.2017.2719044
10.1109/TIT.2009.2018325
10.1109/TIT.2018.2883306
10.1038/nphys3029
10.1038/s41534-020-00349-z
10.1109/SFCS.1994.365700
10.1145/3313276.3316344
10.1103/PhysRevLett.127.120502
10.1145/3313276.3316310
10.1103/PhysRevResearch.3.033251
10.4230/LIPIcs.STACS.2012.636
10.1007/s00220-014-2122-x
10.22331/q-2020-03-26-248
10.1063/1.4838856
10.1103/PhysRevLett.81.5672
10.1103/PhysRevA.96.040302
10.1145/3313276.3316366
10.1080/09500349414552171
10.22331/q-2019-07-12-163
10.1145/3055399.3055454
10.1103/PhysRevLett.87.167902
10.1016/0034-4877(76)90060-4
10.1007/s002200200635
10.1088/1464-4266/5/1/311
10.1038/s41598-019-42662-4
10.1073/pnas.0808245105
10.1103/PhysRevA.83.053420
10.1088/2058-9565/ac38ba
10.1103/PhysRevLett.107.210404
10.1103/PhysRevLett.128.220502
10.1017/cbo9780511976667
10.1103/PhysRevA.104.022428
10.4230/LIPIcs.ICALP.2019.99
10.1098/rspa.2015.0301
10.1109/TIT.2011.2134250
10.1145/2746539.2746582
10.1103/PhysRevLett.106.230501
10.1103/PhysRevLett.105.150401
10.1103/PhysRevA.74.020301
10.1007/978-0-387-30440-3_428
10.1109/ISIT.2019.8849572
10.1140/epjp/s13360-021-01232-2
10.1103/PhysRevLett.103.150502
10.1038/s41534-017-0013-7
10.22331/q-2020-08-13-307
10.1007/BF02650179
10.1145/2897518.2897544
10.1016/S0375-9601(97)00199-0
10.1109/SFCS.2002.1181970
10.1103/PhysRevLett.120.200502
10.1103/PhysRevLett.101.010504
10.1103/PhysRevA.76.030305
10.1016/j.physrep.2009.02.004
10.1090/conm/305/05215
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2022.3203985
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 282
ExternalDocumentID 10_1109_TIT_2022_3203985
9875352
Genre orig-research
GrantInformation_xml – fundername: Sydney Quantum Academy, NSW, Australia
– fundername: National Natural Science Foundation of China
  grantid: 61832015
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFA0306701
  funderid: 10.13039/501100012166
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-a0366828b693296907bd458c91dbc8ab6ce3d54a2542d4fa441eafbd2eeedca53
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922064900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Mon Jun 30 03:31:41 EDT 2025
Sat Nov 29 03:31:49 EST 2025
Tue Nov 18 21:18:39 EST 2025
Wed Aug 27 02:09:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a0366828b693296907bd458c91dbc8ab6ce3d54a2542d4fa441eafbd2eeedca53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0772-6635
0000-0002-7436-0426
0000-0003-4847-702X
0000-0001-7628-1185
0000-0001-5715-4885
0000-0002-3490-0029
0000-0001-5107-8279
PQID 2757181925
PQPubID 36024
PageCount 10
ParticipantIDs ieee_primary_9875352
proquest_journals_2757181925
crossref_primary_10_1109_TIT_2022_3203985
crossref_citationtrail_10_1109_TIT_2022_3203985
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
Brand ao (ref14)
ref52
ref11
ref10
ref54
ref17
ref51
ref50
Chakraborty (ref58)
ref46
ref48
ref47
ref42
ref41
ref44
ref43
Wang (ref55) 2022
Gilyén (ref60) 2018
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
Gilyén (ref16); 151
ref34
ref37
ref36
ref31
Chakraborty (ref53); 8
ref30
Gur (ref19) 2021
ref33
ref32
Agarwal (ref18) 2021
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
Gilyén (ref56) 2022
ref65
ref28
ref27
ref29
Montanaro (ref45) 2016; 7
ref62
ref61
References_xml – ident: ref4
  doi: 10.1103/PhysRevLett.79.2586
– start-page: 33:1
  volume-title: Proc. 46th Int. Colloq. Automata, Lang., Program.
  ident: ref58
  article-title: The power of block-encoded matrix powers: Improved regression techniques via faster Hamiltonian simulation
– start-page: 27:1
  volume-title: Proc. 46th Int. Colloq. Automata, Lang., Program.
  ident: ref14
  article-title: Quantum SDP solvers: Large speed-ups, optimality, and applications to quantum learning
– ident: ref26
  doi: 10.1109/TIT.2017.2719044
– ident: ref66
  doi: 10.1109/TIT.2009.2018325
– ident: ref54
  doi: 10.1109/TIT.2018.2883306
– ident: ref57
  doi: 10.1038/nphys3029
– ident: ref11
  doi: 10.1038/s41534-020-00349-z
– ident: ref1
  doi: 10.1109/SFCS.1994.365700
– ident: ref46
  doi: 10.1145/3313276.3316344
– ident: ref37
  doi: 10.1103/PhysRevLett.127.120502
– ident: ref61
  doi: 10.1145/3313276.3316310
– ident: ref36
  doi: 10.1103/PhysRevResearch.3.033251
– volume-title: arXiv:1811.04909
  year: 2018
  ident: ref60
  article-title: Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension
– ident: ref63
  doi: 10.4230/LIPIcs.STACS.2012.636
– ident: ref64
  doi: 10.1007/s00220-014-2122-x
– ident: ref34
  doi: 10.22331/q-2020-03-26-248
– ident: ref65
  doi: 10.1063/1.4838856
– ident: ref38
  doi: 10.1103/PhysRevLett.81.5672
– ident: ref39
  doi: 10.1103/PhysRevA.96.040302
– volume: 151
  start-page: 25:1
  volume-title: Proc. 11th Innov. Theor. Comput. Sci. Conf.
  ident: ref16
  article-title: Distributional property testing in a quantum world
– ident: ref59
  doi: 10.1145/3313276.3316366
– ident: ref8
  doi: 10.1080/09500349414552171
– volume-title: arXiv:2203.13522
  year: 2022
  ident: ref55
  article-title: New quantum algorithms for computing quantum entropies and distances
– ident: ref41
  doi: 10.22331/q-2019-07-12-163
– ident: ref48
  doi: 10.1145/3055399.3055454
– ident: ref27
  doi: 10.1103/PhysRevLett.87.167902
– ident: ref7
  doi: 10.1016/0034-4877(76)90060-4
– ident: ref5
  doi: 10.1007/s002200200635
– ident: ref23
  doi: 10.1088/1464-4266/5/1/311
– ident: ref28
  doi: 10.1038/s41598-019-42662-4
– ident: ref6
  doi: 10.1073/pnas.0808245105
– volume-title: arXiv:2111.11139
  year: 2021
  ident: ref19
  article-title: Sublinear quantum algorithms for estimating von Neumann entropy
– ident: ref10
  doi: 10.1103/PhysRevA.83.053420
– ident: ref35
  doi: 10.1088/2058-9565/ac38ba
– ident: ref33
  doi: 10.1103/PhysRevLett.107.210404
– ident: ref17
  doi: 10.1103/PhysRevLett.128.220502
– ident: ref9
  doi: 10.1017/cbo9780511976667
– ident: ref20
  doi: 10.1103/PhysRevA.104.022428
– ident: ref15
  doi: 10.4230/LIPIcs.ICALP.2019.99
– ident: ref52
  doi: 10.1098/rspa.2015.0301
– ident: ref51
  doi: 10.1109/TIT.2011.2134250
– ident: ref47
  doi: 10.1145/2746539.2746582
– volume-title: arXiv:2108.08406
  year: 2021
  ident: ref18
  article-title: Estimating distinguishability measures on quantum computers
– ident: ref32
  doi: 10.1103/PhysRevLett.106.230501
– ident: ref24
  doi: 10.1103/PhysRevLett.105.150401
– volume: 8
  start-page: 145
  volume-title: Proc. 13th Int. Conf. Found. Softw. Technol. Theor. Comput. Sci.
  ident: ref53
  article-title: New results on quantum property testing
– ident: ref29
  doi: 10.1103/PhysRevA.74.020301
– ident: ref21
  doi: 10.1007/978-0-387-30440-3_428
– ident: ref50
  doi: 10.1109/ISIT.2019.8849572
– volume: 7
  start-page: 1
  volume-title: Theory of Computing Library Graduate Surveys
  year: 2016
  ident: ref45
  article-title: A survey of quantum property testing
– ident: ref12
  doi: 10.1140/epjp/s13360-021-01232-2
– ident: ref2
  doi: 10.1103/PhysRevLett.103.150502
– volume-title: arXiv:2203.15993
  year: 2022
  ident: ref56
  article-title: Improved quantum algorithms for fidelity estimation
– ident: ref49
  doi: 10.1038/s41534-017-0013-7
– ident: ref62
  doi: 10.22331/q-2020-08-13-307
– ident: ref3
  doi: 10.1007/BF02650179
– ident: ref25
  doi: 10.1145/2897518.2897544
– ident: ref22
  doi: 10.1016/S0375-9601(97)00199-0
– ident: ref42
  doi: 10.1145/3313276.3316366
– ident: ref13
  doi: 10.1109/SFCS.2002.1181970
– ident: ref40
  doi: 10.1103/PhysRevLett.120.200502
– ident: ref44
  doi: 10.1103/PhysRevLett.101.010504
– ident: ref30
  doi: 10.1103/PhysRevA.76.030305
– ident: ref31
  doi: 10.1016/j.physrep.2009.02.004
– ident: ref43
  doi: 10.1090/conm/305/05215
SSID ssj0014512
Score 2.615288
Snippet For two unknown mixed quantum states <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> and <inline-formula> <tex-math...
For two unknown mixed quantum states [Formula Omitted] and [Formula Omitted] in an [Formula Omitted]-dimensional Hilbert space, computing their fidelity...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 273
SubjectTerms Accuracy
Algorithms
Computational modeling
Computer science
Estimation
Hilbert space
Polynomials
Quantum algorithm
quantum algorithms
Quantum computers
Quantum computing
quantum fidelity
Quantum phenomena
Quantum state
quantum states
Software
Title Quantum Algorithm for Fidelity Estimation
URI https://ieeexplore.ieee.org/document/9875352
https://www.proquest.com/docview/2757181925
Volume 69
WOSCitedRecordID wos000922064900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1q8aAHq61itUoOXgqmTfYjyR6LWPRSFCr0Fja7Gy30Q9rE3-9skoaCIngLZBeSt5mdNzuZeQB3zNccl1a6NDKpy6T2XWFo6CJ7TinOQCfKCrGJcDKJZjPx0oD7uhbGGFP8fGYG9rLI5eu1yu1R2VBYcs1xwz0Iw6Cs1aozBoz7ZWdwHw0YY45dStITw-nzFANBQgaUeFRY1eQ9F1RoqvzYiAvvMm7977lO4aRikc6oXPYzaJhVG1o7hQanMtg2HO-1G-xA_zVHHPOlM1q8rzfz7GPpIGV1xrbTFZJx5xHNvaxkPIe38eP04cmtpBJcRYSfuRIdUYDBUxIgHxM24k0045ESvk5UJJNAGao5kxgOEs1SiSTIyDTRBN9FK8npBTRX65W5BCdKPekpmUpuDEu5STQaraIhYQrvJLILwx16sar6iFs5i0VcxBOeiBHv2OIdV3h3oV_P-Cx7aPwxtmPxrcdV0Haht1uguDKybUxCjp4VKSq_-n3WNRxZdfjyxKQHzWyTmxs4VF_ZfLu5Lb6fb5KCwo8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7GFNQHp5vidGoffBnYrU2TrXkc4thwDoUKeytpkupgP2Rb_fu99McYKIJvhSbQfunlvsv17gO4o65iuLTC9nwd21Qo1-ba69rInmMPZ6ATpanYRHc89icT_lKC-20tjNY6_flMt8xlmstXS5mYo7I2N-Sa4Ya7xyglTlattc0ZUOZmvcFdNGGMOoqkpMPbwTDAUJCQlkccjxvd5B0nlKqq_NiKU__Sr_zvyU7gOOeRVi9b-FMo6UUVKoVGg5WbbBWOdhoO1qD5miCSydzqzd6Xq-nmY24habX6ptcV0nHrEQ0-q2U8g7f-Y_AwsHOxBFsS7m5sga6og-FT1EFGxk3MGynKfMldFUlfRB2pPcWowICQKBoLpEFaxJEi-C5KCuadQ3mxXOgLsPzYEY4UsWBa05jpSKHZSq9LqMQ7kahDu0AvlHkncSNoMQvTiMLhIeIdGrzDHO86NLczPrMuGn-MrRl8t-NyaOvQKBYozM1sHZIuQ9-KJJVd_j7rFg4GwfMoHA3HT1dwaLTis_OTBpQ3q0Rfw7782kzXq5v0W_oG3STF1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Algorithm+for+Fidelity+Estimation&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Wang%2C+Qisheng&rft.au=Zhang%2C+Zhicheng&rft.au=Chen%2C+Kean&rft.au=Guan%2C+Ji&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=69&rft.issue=1&rft.spage=273&rft_id=info:doi/10.1109%2FTIT.2022.3203985&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon