Hyers-Ulam Stability to Linear Nonhomogeneous Quaternion-Valued Matrix Difference Equations via Complex Representation

This paper focuses on the Hyers-Ulam stability to linear nonhomogeneous quaternion-valued matrix difference equations via complex representation. Then one can transfer the second-order and higher-order linear nonhomogeneous quaternion-valued difference equations into the first-order linear nonhomoge...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Qualitative theory of dynamical systems Ročník 23; číslo 1
Hlavní autori: Wang, Jiangnan, Wang, JinRong, Liu, Rui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.02.2024
Predmet:
ISSN:1575-5460, 1662-3592
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper focuses on the Hyers-Ulam stability to linear nonhomogeneous quaternion-valued matrix difference equations via complex representation. Then one can transfer the second-order and higher-order linear nonhomogeneous quaternion-valued difference equations into the first-order linear nonhomogeneous quaternion-valued matrix difference equations to obtain their Hyers-Ulam stability results. Finally, two examples are given to illustrate the theoretical results.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-023-00865-1