Hyers-Ulam Stability to Linear Nonhomogeneous Quaternion-Valued Matrix Difference Equations via Complex Representation

This paper focuses on the Hyers-Ulam stability to linear nonhomogeneous quaternion-valued matrix difference equations via complex representation. Then one can transfer the second-order and higher-order linear nonhomogeneous quaternion-valued difference equations into the first-order linear nonhomoge...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Qualitative theory of dynamical systems Ročník 23; číslo 1
Hlavní autoři: Wang, Jiangnan, Wang, JinRong, Liu, Rui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.02.2024
Témata:
ISSN:1575-5460, 1662-3592
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper focuses on the Hyers-Ulam stability to linear nonhomogeneous quaternion-valued matrix difference equations via complex representation. Then one can transfer the second-order and higher-order linear nonhomogeneous quaternion-valued difference equations into the first-order linear nonhomogeneous quaternion-valued matrix difference equations to obtain their Hyers-Ulam stability results. Finally, two examples are given to illustrate the theoretical results.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-023-00865-1