Hyers-Ulam Stability to Linear Nonhomogeneous Quaternion-Valued Matrix Difference Equations via Complex Representation
This paper focuses on the Hyers-Ulam stability to linear nonhomogeneous quaternion-valued matrix difference equations via complex representation. Then one can transfer the second-order and higher-order linear nonhomogeneous quaternion-valued difference equations into the first-order linear nonhomoge...
Uloženo v:
| Vydáno v: | Qualitative theory of dynamical systems Ročník 23; číslo 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.02.2024
|
| Témata: | |
| ISSN: | 1575-5460, 1662-3592 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper focuses on the Hyers-Ulam stability to linear nonhomogeneous quaternion-valued matrix difference equations via complex representation. Then one can transfer the second-order and higher-order linear nonhomogeneous quaternion-valued difference equations into the first-order linear nonhomogeneous quaternion-valued matrix difference equations to obtain their Hyers-Ulam stability results. Finally, two examples are given to illustrate the theoretical results. |
|---|---|
| ISSN: | 1575-5460 1662-3592 |
| DOI: | 10.1007/s12346-023-00865-1 |