A Nonlinear Model Compression Scheme Based on Variational Autoencoder for Microwave Data Inversion
We present an inversion algorithm with a deep-learning-based model compression scheme. Models are described with latent parameters of a trained variational autoencoder (VAE) neural network. Given observed data, latent parameters are inverted by minimizing the data misfit cost function using the Gaus...
Uloženo v:
| Vydáno v: | IEEE transactions on antennas and propagation Ročník 70; číslo 11; s. 11059 - 11069 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-926X, 1558-2221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present an inversion algorithm with a deep-learning-based model compression scheme. Models are described with latent parameters of a trained variational autoencoder (VAE) neural network. Given observed data, latent parameters are inverted by minimizing the data misfit cost function using the Gauss-Newton method. This inversion algorithm is tested using both synthetic and experimental datasets. We achieve a 0.87% compression rate while maintaining high-quality reconstruction. The deep neural network renders nonlinear model compression, which largely reduces the number of unknowns; hence, it has higher computational efficiency. Furthermore, various prior knowledge that is difficult to describe with rigorous forms can be incorporated into inversion through training the neural network, which mitigates the ill-posedness of the inverse problem. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-926X 1558-2221 |
| DOI: | 10.1109/TAP.2022.3195553 |