A Nonlinear Model Compression Scheme Based on Variational Autoencoder for Microwave Data Inversion

We present an inversion algorithm with a deep-learning-based model compression scheme. Models are described with latent parameters of a trained variational autoencoder (VAE) neural network. Given observed data, latent parameters are inverted by minimizing the data misfit cost function using the Gaus...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on antennas and propagation Ročník 70; číslo 11; s. 11059 - 11069
Hlavní autoři: Guo, Rui, Lin, Zhichao, Li, Maokun, Yang, Fan, Xu, Shenheng, Abubakar, Aria
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-926X, 1558-2221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present an inversion algorithm with a deep-learning-based model compression scheme. Models are described with latent parameters of a trained variational autoencoder (VAE) neural network. Given observed data, latent parameters are inverted by minimizing the data misfit cost function using the Gauss-Newton method. This inversion algorithm is tested using both synthetic and experimental datasets. We achieve a 0.87% compression rate while maintaining high-quality reconstruction. The deep neural network renders nonlinear model compression, which largely reduces the number of unknowns; hence, it has higher computational efficiency. Furthermore, various prior knowledge that is difficult to describe with rigorous forms can be incorporated into inversion through training the neural network, which mitigates the ill-posedness of the inverse problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2022.3195553