An Accurate Process-Induced Variability-Aware Compact Model-Based Circuit Performance Estimation for Design-Technology Co-Optimization
In sub-10-nm fin field-effect transistors (FinFETs), line-edge roughness (LER) and metal-gate granularity (MGG) are the two most dominant sources of variability and are mostly modeled semi-empirically. In this work, compact models of LER and MGG are used. We show an accurate process-induced variabil...
Uložené v:
| Vydané v: | IEEE transactions on electron devices Ročník 69; číslo 1; s. 45 - 50 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9383, 1557-9646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In sub-10-nm fin field-effect transistors (FinFETs), line-edge roughness (LER) and metal-gate granularity (MGG) are the two most dominant sources of variability and are mostly modeled semi-empirically. In this work, compact models of LER and MGG are used. We show an accurate process-induced variability (PIV)-aware compact model-based circuit performance estimation for design-technology co-optimization (DTCO). This work is carried out using an experimentally validated Berkeley Short-channel IGFET Model-Common Multi-Gate (BSIM-CMG) model on a 7-nm FinFET node. First, we have shown performance benchmarking of LER and MGG models with the state of the art and shown <inline-formula> <tex-math notation="LaTeX">\sim 4\times </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">\sim 2.3\times </tex-math></inline-formula>) accuracy improvement for nMOS (pMOS) in the estimation of device figure of merits (DFoMs). Second, ring oscillator (RO) and static random-access memory (SRAM) circuit's performance estimation is carried out for LER and MGG variability. Furthermore, ~22% more optimistic estimate of (<inline-formula> <tex-math notation="LaTeX">\sigma /\mu </tex-math></inline-formula>) SHM (static hold margin) compared to the state-of-the-art model with <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DD}} </tex-math></inline-formula> variation is shown. Finally, we demonstrate our improved DFoM accuracy translated to more accurate circuit figure of merits (CFoMs) performance estimation. For worst-case SHM (3(<inline-formula> <tex-math notation="LaTeX">\sigma /\mu </tex-math></inline-formula>) SHM @<inline-formula> <tex-math notation="LaTeX">{V}_{\text {DD}}={0.75} </tex-math></inline-formula> V) compared to state of the art, dynamic (standby) power reduction by ~73% (~61%) is shown. Thus, our enhanced variability model accuracy enables more credible DTCO with significantly better performance estimates. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9383 1557-9646 |
| DOI: | 10.1109/TED.2021.3131966 |