Application of 3-algorithm ANN programming to predict the strength performance of hydrated-lime activated rice husk ash treated soil

Artificial neural network (ANN) method has been applied in the present work to predict the California bearing ratio (CBR), unconfined compressive strength (UCS), and resistance value (R) of expansive soil treated with recycled and activated composites of rice husk ash. Pavement foundations suffer fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale and Multidisciplinary Modeling, Experiments and Design Jg. 4; H. 4; S. 259 - 274
Hauptverfasser: Onyelowe, Kennedy C., Iqbal, Mudassir, Jalal, Fazal E., Onyia, Michael E., Onuoha, Ifeanyichukwu C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.12.2021
Schlagworte:
ISSN:2520-8160, 2520-8179
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Artificial neural network (ANN) method has been applied in the present work to predict the California bearing ratio (CBR), unconfined compressive strength (UCS), and resistance value (R) of expansive soil treated with recycled and activated composites of rice husk ash. Pavement foundations suffer from poor design and construction, poor material handling and utilization and management lapses. The evolutions of soft computing techniques have produced various algorithms developed to overcome certain lapses in performance. Three of such algorithms from ANN are Levenberg–Muarquardt Backpropagation (LMBP), Bayesian Programming (BP), and Conjugate Gradient (CG) algorithms. In this work, the expansive soil classified as A-7-6 group soil was treated with hydrated-lime activated rice husk ash (HARHA) in varying proportions between 0.1 and 12% by weight of soil at the rate of 0.1% to produce 121 datasets. These were used to predict the behavior of the soil’s strength parameters (CBR, UCS and R) utilizing the evolutionary hybrid algorithms of ANN. The predictor parameters were HARHA, liquid limit ( w L ), (plastic limit ( w P ), plasticity index ( I P ), optimum moisture content ( w OMC ), clay activity ( A C ), and (maximum dry density ( δ max ). A multiple linear regression (MLR) was also conducted on the datasets in addition to ANN to serve as a check and linear validation mechanism. MLR and ANN methods agreed in terms of performance and fit at the end of computing and iteration. However, the response validation on the predicted models showed a good correlation above 0.9 and a great performance index. Comparatively, the LMBP algorithm yielded an accurate estimation of the results in lesser iterations than the Bayesian and the CG algorithms, while the Bayesian technique produced the best result with the required number of iterations to minimize the error. And finally, the LMBP algorithm outclassed the other two algorithms in terms of the predicted models’ accuracy.
AbstractList Artificial neural network (ANN) method has been applied in the present work to predict the California bearing ratio (CBR), unconfined compressive strength (UCS), and resistance value (R) of expansive soil treated with recycled and activated composites of rice husk ash. Pavement foundations suffer from poor design and construction, poor material handling and utilization and management lapses. The evolutions of soft computing techniques have produced various algorithms developed to overcome certain lapses in performance. Three of such algorithms from ANN are Levenberg–Muarquardt Backpropagation (LMBP), Bayesian Programming (BP), and Conjugate Gradient (CG) algorithms. In this work, the expansive soil classified as A-7-6 group soil was treated with hydrated-lime activated rice husk ash (HARHA) in varying proportions between 0.1 and 12% by weight of soil at the rate of 0.1% to produce 121 datasets. These were used to predict the behavior of the soil’s strength parameters (CBR, UCS and R) utilizing the evolutionary hybrid algorithms of ANN. The predictor parameters were HARHA, liquid limit ( w L ), (plastic limit ( w P ), plasticity index ( I P ), optimum moisture content ( w OMC ), clay activity ( A C ), and (maximum dry density ( δ max ). A multiple linear regression (MLR) was also conducted on the datasets in addition to ANN to serve as a check and linear validation mechanism. MLR and ANN methods agreed in terms of performance and fit at the end of computing and iteration. However, the response validation on the predicted models showed a good correlation above 0.9 and a great performance index. Comparatively, the LMBP algorithm yielded an accurate estimation of the results in lesser iterations than the Bayesian and the CG algorithms, while the Bayesian technique produced the best result with the required number of iterations to minimize the error. And finally, the LMBP algorithm outclassed the other two algorithms in terms of the predicted models’ accuracy.
Author Onuoha, Ifeanyichukwu C.
Jalal, Fazal E.
Onyelowe, Kennedy C.
Iqbal, Mudassir
Onyia, Michael E.
Author_xml – sequence: 1
  givenname: Kennedy C.
  orcidid: 0000-0001-5218-820X
  surname: Onyelowe
  fullname: Onyelowe, Kennedy C.
  email: kennedychibuzor@kiu.ac.ug, konyelowe@mouau.edu.ng, konyelowe@gmail.com
  organization: Department of Civil Engineering, Michael Okpara University of Agriculture, Department of Civil and Mechanical Engineering, Kampala International University
– sequence: 2
  givenname: Mudassir
  surname: Iqbal
  fullname: Iqbal, Mudassir
  organization: Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, School of Naval Architecture, Ocean and Civil Engineering, Shangai Jiao Tong University
– sequence: 3
  givenname: Fazal E.
  surname: Jalal
  fullname: Jalal, Fazal E.
  organization: Department of Civil Engineering, Shanghai Jiao Tong University
– sequence: 4
  givenname: Michael E.
  surname: Onyia
  fullname: Onyia, Michael E.
  organization: Department of Civil Engineering, Faculty of Engineering, University of Nigeria
– sequence: 5
  givenname: Ifeanyichukwu C.
  surname: Onuoha
  fullname: Onuoha, Ifeanyichukwu C.
  organization: Department of Environmental Technology, Federal University of Technology
BookMark eNp9kMtOAjEUQBuDiYj8gKv-QLUPpHRJiK-E4EbXk07ndqY4M520xYS9H24B48IFq95Hz7255xqNet8DQreM3jFK5X2cMSUUoZwRSqkSRF6gMX_glCyYVKO_eE6v0DTGbf7EpZjJBR2j7-UwtM7o5HyPvcWC6Lb2waWmw8vNBg_B10F3netrnHxOoXIm4dQAjilAX6cGDxCsD53uDRxGNPsq6AQVaV0HWJvkvg4pDi73m138xDo2OMPHavSuvUGXVrcRpr_vBH08Pb6vXsj67fl1tVwTwxVLRElDOfA5VWBsyUqQZa6UFVgx06YSUCrDLMxBaAUsn25BVtWilDNmuLRaTBA_zTXBxxjAFkNwnQ77gtHioLI4qSyyyuKospAZWvyDjEtHXylo155HxQmNeU9fQyi2fhf6fOI56gcaz46E
CitedBy_id crossref_primary_10_3390_polym14112270
crossref_primary_10_1093_ijlct_ctac058
crossref_primary_10_1007_s10706_025_03097_z
crossref_primary_10_1007_s41939_023_00203_7
crossref_primary_10_1007_s42452_024_06244_y
crossref_primary_10_3390_ma15134386
crossref_primary_10_1007_s43621_025_01195_9
crossref_primary_10_1155_2021_3267018
crossref_primary_10_1007_s11709_022_0846_9
crossref_primary_10_1016_j_clema_2021_100039
crossref_primary_10_3390_mining2040034
crossref_primary_10_3390_ma15196959
crossref_primary_10_1007_s11709_023_0940_7
crossref_primary_10_1038_s41598_023_40903_1
crossref_primary_10_3390_math10193432
crossref_primary_10_1016_j_cemconcomp_2022_104721
crossref_primary_10_1007_s13369_023_08014_1
crossref_primary_10_1007_s40515_025_00641_5
crossref_primary_10_4018_IJGEE_298988
crossref_primary_10_1155_2021_6696392
crossref_primary_10_1007_s43503_024_00029_3
crossref_primary_10_1016_j_clema_2021_100005
crossref_primary_10_1617_s11527_021_01783_x
crossref_primary_10_3390_polym14112145
crossref_primary_10_1007_s42107_023_00800_4
crossref_primary_10_1007_s41204_021_00123_2
crossref_primary_10_1038_s41598_023_35204_6
crossref_primary_10_3389_fbuil_2024_1455915
crossref_primary_10_1007_s40515_021_00199_y
crossref_primary_10_3390_ma15196969
crossref_primary_10_3390_ma15175823
crossref_primary_10_1038_s41598_024_74106_z
crossref_primary_10_1016_j_conbuildmat_2024_138046
crossref_primary_10_1007_s40098_025_01297_1
crossref_primary_10_1007_s42107_023_00832_w
crossref_primary_10_1007_s41204_021_00131_2
crossref_primary_10_1007_s42107_023_00839_3
crossref_primary_10_1007_s41939_021_00114_5
crossref_primary_10_1080_17486025_2022_2090621
crossref_primary_10_1016_j_cscm_2022_e00955
crossref_primary_10_3390_ma15010290
crossref_primary_10_1155_2021_5992628
crossref_primary_10_3390_ma15217713
crossref_primary_10_1007_s41939_024_00590_5
crossref_primary_10_1007_s40515_022_00225_7
crossref_primary_10_3390_ma15010175
crossref_primary_10_1016_j_trgeo_2025_101550
crossref_primary_10_3390_ma14216516
crossref_primary_10_1007_s42947_022_00185_8
Cites_doi 10.1016/j.ijprt.2018.04.003
10.3354/cr030079
10.1007/s00521-015-1943-7
10.1002/cyto.a.20896
10.1016/j.advengsoft.2017.03.011
10.1080/14697688.2019.1633014
10.1093/Ijlct/Ctz028
10.1016/j.atmosenv.2008.10.005
10.2991/iccsae-15.2016.43
10.2478/s11600-008-0073-3
10.1016/j.protcy.2013.12.157
10.4271/2012-01-0223
10.1109/TASL.2008.919072
10.14382/epitoanyag-jsbcm.2020.35
10.2174/1874836802014010237
10.33922/j.ujet_v6i1_9
10.14382/epitoanyag-jsbcm.2020.36
10.1016/j.eti.2018.04.005
10.1016/j.proeng.2017.05.286
10.3390/app10134565
10.1007/978-3-642-00296-0_5
10.1016/j.jhazmat.2019.121322
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
DBID AAYXX
CITATION
DOI 10.1007/s41939-021-00093-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
EndPage 274
ExternalDocumentID 10_1007_s41939_021_00093_7
GroupedDBID -EM
0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c291t-97c02e2609ecfb1be7b7c0bdef34acd3eb9c1fe6e3a9e1179fe7dd8b741c27fa3
IEDL.DBID RSV
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641429500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2520-8160
IngestDate Tue Nov 18 21:33:42 EST 2025
Sat Nov 29 03:23:30 EST 2025
Fri Feb 21 02:47:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bayesian algorithm
Back-propagation algorithm
Artificial neural network (ANN)
Soft computing
Sustainable construction materials
Artificial intelligence
Machine learning in geotechnics
Levenberg–muarquardt algorithm
Conjugate gradient algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-97c02e2609ecfb1be7b7c0bdef34acd3eb9c1fe6e3a9e1179fe7dd8b741c27fa3
ORCID 0000-0001-5218-820X
PageCount 16
ParticipantIDs crossref_primary_10_1007_s41939_021_00093_7
crossref_citationtrail_10_1007_s41939_021_00093_7
springer_journals_10_1007_s41939_021_00093_7
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References KisiOUncuogluEComparison of three back-propagation training algorithms for two case studiesIndian J Eng Materials Sci2005122005434442
Onyelowe KC, Alaneme GU, Onyia ME, Bui Van D, Diomonyeka MU, Nnadi E, Ogbonna C, Odum LO, Aju DE, Abel C, Udousoro IM, Onukwugha E (2021) Comparative modeling of strength properties of hydrated-lime activated rice-husk-ash (HARHA) modified soft soil for pavement construction purposes by artificial neural network (ANN) and fuzzy logic (FL). Jurnal Kejuruteraan 33(2)
Alaneme GU, Onyelowe KC, Onyia ME, Bui Van D, Mbadike EM, Ezugwu CN, Dimonyeka MU, Attah IC, Ogbonna C, Abel C, Ikpa CC, Udousoro IM (2020) Modeling volume change properties of hydrated-lime activated rice husk ash (HARHA) modified soft soil for construction purposes by artificial neural network (ANN). Umudike J Eng Technol (UJET) 6(1):1–12. https://doi.org/https://doi.org/10.33922/j.ujet_v6i1_9
Benesty J et al. (2009) Pearson correlation coefficient, in Noise reduction in speech proceeding, 2009, Springer, p. 1–4
WillmottCJMatsuuraKAdvantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performanceClim Res2005301798210.3354/cr030079
AdlerJParmryd J (2010) Quantifying colocalization by correlation: pearson correlation coeeficient is superior to the Mander, s overlap coefficientCytometry A201077873374210.1002/cyto.a.20896
KingstonGBMaierHRLambertMFA Bayesian approach to artificial neural network model selectionCentre Appl Model Water Eng School Civ Environ Eng Univ Adelaide Bull20166201618531859
Sariev E, Germano G (2019). Bayesian regularized artificial neural networks for the estimation of the probability of default. Quantitative Finance, 20: 2, 311–328, doi: https://doi.org/10.1080/14697688.2019.1633014
BS 1377 - 2, 3, 1990. Methods of Testing Soils for Civil Engineering Purposes, British Standard Institute, London
ShiBHZhuXFOn improved algorithm of LMBP neural networksControl Eng China2008200820162459765
IqbalMFPrediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programmingJ Hazard Mater2020202038412132210.1016/j.jhazmat.2019.121322
Onyelowe KC, Onyia M, Onukwugha ER, Bui Van D, Obimba-Wogu J, Ikpa C (2020) Mechanical properties of fly ash modified asphalt treated with crushed waste glasses as fillers for sustainable pavements. Epitőanyag–Journal of Silicate Based and Composite Materials 72(6):219–222. https://doi.org/https://doi.org/10.14382/epitoanyag-jsbcm.2020.35
BS 1924, (1990). Methods of Tests for Stabilized Soil, British Standard Institute, London
BS 5930, (2015). Methods of Soil Description, British Standard Institute, London
FerentinouMFakirMAn ANN approach for the prediction of uniaxial compressive strength, of some sedimentary and Igneous Rocks in Eastern KwaZulu-NatalSymp Int Soc Rock Mech Proc Eng201719120171117112510.1016/j.proeng.2017.05.286
BabanajadSKGandomiAHAlaviAHNew prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approachAdv Eng Softw20172017110556810.1016/j.advengsoft.2017.03.011
Onyelowe KC, Onyia ME, Onukwugha ER, Nnadi OC, Onuoha IC, Jalal FE (2020) Polynomial relationship of compaction properties of silicate-based RHA modified expansive soil for pavement subgrade purposes Epitőanyag—J Silicate Based Composite Materials 72(6):223–228. https://doi.org/https://doi.org/10.14382/epitoanyag-jsbcm.2020.36
Van BuiDOnyeloweKCVan NguyenMCapillary rise, suction (absorption) and the strength development of HBM treated with QD base GeopolymerInt J Pavement Res Technol [in press]201810.1016/j.ijprt.2018.04.003
SaldañaMPérez-ReyJGIJeldresMToroNApplying statistical analysis and machine learning for modeling the UCS from P-Wave velocity, density and porosity on dry travertineAppl Sci202010456510.3390/app10134565
VanBDuc and Onyelowe, K.C. Adsorbed complex and laboratory geotechnics of Quarry Dust (QD) stabilized lateritic soilsEnviron Technol Innovation20181035536810.1016/j.eti.2018.04.005
Abdi Y, Momeni E, Khabir RR (2020) A reliable PSO-based ANN approach for predicting unconfined compressive strength of sandstones. Open Construction Building Technol J 2020 14: 237–249. DOI: https://doi.org/10.2174/1874836802014010237
BenestyJChenJHuangYOn the importance of the Pearson correlation coefficient in noise reductionIEEE Trans Audio Speech Language Proc200816475776510.1109/TASL.2008.919072
ErzinYTurkozDUse of neural networks for the prediction of the CBR value of some Aegean sandsNeural Comput Applic2016271415142610.1007/s00521-015-1943-7
Salahudeen AB, Sadeeq JA, Badamasi A, Onyelowe KC (2020) Prediction of unconfined compressive strength of treated expansive clay using back-propagation artificial neural networks. Nigerian Journal of Engineering, Faculty of Engineering Ahmadu Bello University Samaru - Zaria, Nigeria. Vol. 27, No. 1, April 2020. ISSN: 0794 – 4756. Pp. 45 – 58
Fan X et al. (2002). An evaluation model of supply chain performances using 5DBSC and LMBP neural network algorithm
Quan S, Sun P, Wu G, Hu J (2015) One bayesian network construction algorithm based on dimensionality reduction. In: 5th international conference on computer sciences and automation engineering (ICCSAE 2015), Atlantis Publishers, p. 222–229
HosseiniMNaeiniSARMDehghaniAAZeraatpishehMModeling of soil mechanical resistance using intelligentmethodsJ Soil Sci Plant Nutr2018184939951
OnyeloweKCVan BuiDUbachukwuORecycling and reuse of solid wastes; a hub for ecofriendly, ecoefficient and sustainable soil, concrete, wastewater and pavement reengineeringInt J Low-Carbon Technol201914344045110.1093/Ijlct/Ctz028
Zhan Z, Fu Y, Yang RJ et al. (2012) A Bayesian inference based model interpolation and extrapolation. SAE Int J Materials Manuf 5(2). Doi: https://doi.org/10.4271/2012-01-0223
Nawi NM, Khan A, Rehman MZ, (2013) A new levenberg marquardt based back propagation algorithm trained with cuckoo search. In: The 4th international conference on electrical engineering and informatics (ICEEI 2013), Procedia Technology 11 (2013): p. 18 – 23. https://doi.org/https://doi.org/10.1016/j.protcy.2013.12.157
RezaeiKGuestBFriedrichAFayaziFNakhaeiMBeitollahiAFeed forward neural network and interpolation function models to predict the soil and subsurface sediments distribution in BamIran Acta Geophys200920095727129310.2478/s11600-008-0073-3
WillmottCJMatsuuraKRobesonSMAmbiguities inherent in sums-of-squares-based error statisiticsAtmosp Environ200943374975210.1016/j.atmosenv.2008.10.005
93_CR3
93_CR1
M Ferentinou (93_CR12) 2017; 191
Y Erzin (93_CR10) 2016; 27
J Adler (93_CR2) 2010; 77
J Benesty (93_CR6) 2008; 16
KC Onyelowe (93_CR18) 2019; 14
CJ Willmott (93_CR30) 2005; 30
CJ Willmott (93_CR31) 2009; 43
93_CR22
93_CR24
93_CR20
93_CR21
SK Babanajad (93_CR4) 2017; 2017
93_CR26
BH Shi (93_CR27) 2008; 2008
B Van (93_CR28) 2018; 10
MF Iqbal (93_CR14) 2020; 2020
GB Kingston (93_CR15) 2016; 6
M Hosseini (93_CR13) 2018; 18
M Saldaña (93_CR25) 2020; 10
D Van Bui (93_CR29) 2018
93_CR11
O Kisi (93_CR16) 2005; 12
K Rezaei (93_CR23) 2009; 2009
93_CR32
93_CR19
93_CR9
93_CR8
93_CR7
93_CR5
93_CR17
References_xml – reference: Quan S, Sun P, Wu G, Hu J (2015) One bayesian network construction algorithm based on dimensionality reduction. In: 5th international conference on computer sciences and automation engineering (ICCSAE 2015), Atlantis Publishers, p. 222–229
– reference: BenestyJChenJHuangYOn the importance of the Pearson correlation coefficient in noise reductionIEEE Trans Audio Speech Language Proc200816475776510.1109/TASL.2008.919072
– reference: WillmottCJMatsuuraKAdvantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performanceClim Res2005301798210.3354/cr030079
– reference: KingstonGBMaierHRLambertMFA Bayesian approach to artificial neural network model selectionCentre Appl Model Water Eng School Civ Environ Eng Univ Adelaide Bull20166201618531859
– reference: BS 1377 - 2, 3, 1990. Methods of Testing Soils for Civil Engineering Purposes, British Standard Institute, London
– reference: ErzinYTurkozDUse of neural networks for the prediction of the CBR value of some Aegean sandsNeural Comput Applic2016271415142610.1007/s00521-015-1943-7
– reference: HosseiniMNaeiniSARMDehghaniAAZeraatpishehMModeling of soil mechanical resistance using intelligentmethodsJ Soil Sci Plant Nutr2018184939951
– reference: AdlerJParmryd J (2010) Quantifying colocalization by correlation: pearson correlation coeeficient is superior to the Mander, s overlap coefficientCytometry A201077873374210.1002/cyto.a.20896
– reference: SaldañaMPérez-ReyJGIJeldresMToroNApplying statistical analysis and machine learning for modeling the UCS from P-Wave velocity, density and porosity on dry travertineAppl Sci202010456510.3390/app10134565
– reference: Benesty J et al. (2009) Pearson correlation coefficient, in Noise reduction in speech proceeding, 2009, Springer, p. 1–4
– reference: OnyeloweKCVan BuiDUbachukwuORecycling and reuse of solid wastes; a hub for ecofriendly, ecoefficient and sustainable soil, concrete, wastewater and pavement reengineeringInt J Low-Carbon Technol201914344045110.1093/Ijlct/Ctz028
– reference: BabanajadSKGandomiAHAlaviAHNew prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approachAdv Eng Softw20172017110556810.1016/j.advengsoft.2017.03.011
– reference: Van BuiDOnyeloweKCVan NguyenMCapillary rise, suction (absorption) and the strength development of HBM treated with QD base GeopolymerInt J Pavement Res Technol [in press]201810.1016/j.ijprt.2018.04.003
– reference: Sariev E, Germano G (2019). Bayesian regularized artificial neural networks for the estimation of the probability of default. Quantitative Finance, 20: 2, 311–328, doi: https://doi.org/10.1080/14697688.2019.1633014
– reference: Alaneme GU, Onyelowe KC, Onyia ME, Bui Van D, Mbadike EM, Ezugwu CN, Dimonyeka MU, Attah IC, Ogbonna C, Abel C, Ikpa CC, Udousoro IM (2020) Modeling volume change properties of hydrated-lime activated rice husk ash (HARHA) modified soft soil for construction purposes by artificial neural network (ANN). Umudike J Eng Technol (UJET) 6(1):1–12. https://doi.org/https://doi.org/10.33922/j.ujet_v6i1_9
– reference: Onyelowe KC, Onyia M, Onukwugha ER, Bui Van D, Obimba-Wogu J, Ikpa C (2020) Mechanical properties of fly ash modified asphalt treated with crushed waste glasses as fillers for sustainable pavements. Epitőanyag–Journal of Silicate Based and Composite Materials 72(6):219–222. https://doi.org/https://doi.org/10.14382/epitoanyag-jsbcm.2020.35
– reference: Onyelowe KC, Onyia ME, Onukwugha ER, Nnadi OC, Onuoha IC, Jalal FE (2020) Polynomial relationship of compaction properties of silicate-based RHA modified expansive soil for pavement subgrade purposes Epitőanyag—J Silicate Based Composite Materials 72(6):223–228. https://doi.org/https://doi.org/10.14382/epitoanyag-jsbcm.2020.36
– reference: FerentinouMFakirMAn ANN approach for the prediction of uniaxial compressive strength, of some sedimentary and Igneous Rocks in Eastern KwaZulu-NatalSymp Int Soc Rock Mech Proc Eng201719120171117112510.1016/j.proeng.2017.05.286
– reference: Onyelowe KC, Alaneme GU, Onyia ME, Bui Van D, Diomonyeka MU, Nnadi E, Ogbonna C, Odum LO, Aju DE, Abel C, Udousoro IM, Onukwugha E (2021) Comparative modeling of strength properties of hydrated-lime activated rice-husk-ash (HARHA) modified soft soil for pavement construction purposes by artificial neural network (ANN) and fuzzy logic (FL). Jurnal Kejuruteraan 33(2)
– reference: RezaeiKGuestBFriedrichAFayaziFNakhaeiMBeitollahiAFeed forward neural network and interpolation function models to predict the soil and subsurface sediments distribution in BamIran Acta Geophys200920095727129310.2478/s11600-008-0073-3
– reference: Abdi Y, Momeni E, Khabir RR (2020) A reliable PSO-based ANN approach for predicting unconfined compressive strength of sandstones. Open Construction Building Technol J 2020 14: 237–249. DOI: https://doi.org/10.2174/1874836802014010237
– reference: ShiBHZhuXFOn improved algorithm of LMBP neural networksControl Eng China2008200820162459765
– reference: WillmottCJMatsuuraKRobesonSMAmbiguities inherent in sums-of-squares-based error statisiticsAtmosp Environ200943374975210.1016/j.atmosenv.2008.10.005
– reference: BS 5930, (2015). Methods of Soil Description, British Standard Institute, London
– reference: Nawi NM, Khan A, Rehman MZ, (2013) A new levenberg marquardt based back propagation algorithm trained with cuckoo search. In: The 4th international conference on electrical engineering and informatics (ICEEI 2013), Procedia Technology 11 (2013): p. 18 – 23. https://doi.org/https://doi.org/10.1016/j.protcy.2013.12.157
– reference: Salahudeen AB, Sadeeq JA, Badamasi A, Onyelowe KC (2020) Prediction of unconfined compressive strength of treated expansive clay using back-propagation artificial neural networks. Nigerian Journal of Engineering, Faculty of Engineering Ahmadu Bello University Samaru - Zaria, Nigeria. Vol. 27, No. 1, April 2020. ISSN: 0794 – 4756. Pp. 45 – 58
– reference: VanBDuc and Onyelowe, K.C. Adsorbed complex and laboratory geotechnics of Quarry Dust (QD) stabilized lateritic soilsEnviron Technol Innovation20181035536810.1016/j.eti.2018.04.005
– reference: Fan X et al. (2002). An evaluation model of supply chain performances using 5DBSC and LMBP neural network algorithm
– reference: Zhan Z, Fu Y, Yang RJ et al. (2012) A Bayesian inference based model interpolation and extrapolation. SAE Int J Materials Manuf 5(2). Doi: https://doi.org/10.4271/2012-01-0223
– reference: IqbalMFPrediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programmingJ Hazard Mater2020202038412132210.1016/j.jhazmat.2019.121322
– reference: KisiOUncuogluEComparison of three back-propagation training algorithms for two case studiesIndian J Eng Materials Sci2005122005434442
– reference: BS 1924, (1990). Methods of Tests for Stabilized Soil, British Standard Institute, London
– volume: 18
  start-page: 939
  issue: 4
  year: 2018
  ident: 93_CR13
  publication-title: J Soil Sci Plant Nutr
– year: 2018
  ident: 93_CR29
  publication-title: Int J Pavement Res Technol [in press]
  doi: 10.1016/j.ijprt.2018.04.003
– ident: 93_CR24
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: 93_CR30
  publication-title: Clim Res
  doi: 10.3354/cr030079
– volume: 27
  start-page: 1415
  year: 2016
  ident: 93_CR10
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-015-1943-7
– volume: 77
  start-page: 733
  issue: 8
  year: 2010
  ident: 93_CR2
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20896
– ident: 93_CR11
– volume: 2017
  start-page: 55
  issue: 110
  year: 2017
  ident: 93_CR4
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.03.011
– volume: 2008
  start-page: 016
  issue: 2
  year: 2008
  ident: 93_CR27
  publication-title: Control Eng China
– ident: 93_CR26
  doi: 10.1080/14697688.2019.1633014
– volume: 12
  start-page: 434
  issue: 2005
  year: 2005
  ident: 93_CR16
  publication-title: Indian J Eng Materials Sci
– volume: 14
  start-page: 440
  issue: 3
  year: 2019
  ident: 93_CR18
  publication-title: Int J Low-Carbon Technol
  doi: 10.1093/Ijlct/Ctz028
– ident: 93_CR21
– volume: 43
  start-page: 749
  issue: 3
  year: 2009
  ident: 93_CR31
  publication-title: Atmosp Environ
  doi: 10.1016/j.atmosenv.2008.10.005
– ident: 93_CR22
  doi: 10.2991/iccsae-15.2016.43
– volume: 2009
  start-page: 271
  issue: 57
  year: 2009
  ident: 93_CR23
  publication-title: Iran Acta Geophys
  doi: 10.2478/s11600-008-0073-3
– ident: 93_CR8
– ident: 93_CR17
  doi: 10.1016/j.protcy.2013.12.157
– ident: 93_CR32
  doi: 10.4271/2012-01-0223
– volume: 16
  start-page: 757
  issue: 4
  year: 2008
  ident: 93_CR6
  publication-title: IEEE Trans Audio Speech Language Proc
  doi: 10.1109/TASL.2008.919072
– ident: 93_CR20
  doi: 10.14382/epitoanyag-jsbcm.2020.35
– ident: 93_CR1
  doi: 10.2174/1874836802014010237
– ident: 93_CR3
  doi: 10.33922/j.ujet_v6i1_9
– volume: 6
  start-page: 1853
  issue: 2016
  year: 2016
  ident: 93_CR15
  publication-title: Centre Appl Model Water Eng School Civ Environ Eng Univ Adelaide Bull
– ident: 93_CR19
  doi: 10.14382/epitoanyag-jsbcm.2020.36
– volume: 10
  start-page: 355
  year: 2018
  ident: 93_CR28
  publication-title: Environ Technol Innovation
  doi: 10.1016/j.eti.2018.04.005
– volume: 191
  start-page: 1117
  issue: 2017
  year: 2017
  ident: 93_CR12
  publication-title: Symp Int Soc Rock Mech Proc Eng
  doi: 10.1016/j.proeng.2017.05.286
– volume: 10
  start-page: 4565
  year: 2020
  ident: 93_CR25
  publication-title: Appl Sci
  doi: 10.3390/app10134565
– ident: 93_CR5
  doi: 10.1007/978-3-642-00296-0_5
– ident: 93_CR7
– volume: 2020
  start-page: 121322
  issue: 384
  year: 2020
  ident: 93_CR14
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.121322
– ident: 93_CR9
SSID ssj0002734780
ssib042110740
Score 2.4316058
Snippet Artificial neural network (ANN) method has been applied in the present work to predict the California bearing ratio (CBR), unconfined compressive strength...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 259
SubjectTerms Characterization and Evaluation of Materials
Engineering
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Original Paper
Simulation
Solid Mechanics
Title Application of 3-algorithm ANN programming to predict the strength performance of hydrated-lime activated rice husk ash treated soil
URI https://link.springer.com/article/10.1007/s41939-021-00093-7
Volume 4
WOSCitedRecordID wos000641429500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: RSV
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA86PejBtzhf5OBNA32taY5DHB6kiI-xW0nSxE63dqzdwLt_uEmWbg5koMeEL6Hk8T36fb9fALiKQpdHjLcQ5WELBbSl9GAQMOQSqtwDQqU0P_S7DziOo16PPFpQWFlXu9cpSaOp52C3QPkaBOmSAhOHI7wONpS5i_R1fHru1qcoMCGNZTB5twQu2Dyh5rVUrBS5oWPRM79Pu2yhltOjxup0dv_3vXtgx3qZsD07FvtgTeQHYPsH9-Ah-GovUtewkNBHdPBWjPtVNoTtOIa2cGuohGFVqKbO6FRQ-YtQ40vytyqDowXqQE-RfaaaeCJFg_5QQI2YmOom1LxFMJuUH5CWGTSl7aq3LPqDI_DauXu5vUf2SQbEPeJWiGDueELFQERwyVwmMFM9LBXSDyhPfcEId6UIhU-J0GxzUuA0jZjyW7iHJfWPQSMvcnECIA1l5Pic8sCRSotoprEoZCl2OBVEekETuPU2JNzyletnMwbJnGnZrHCiVjgxK5zgJriejxnN2DpWSt_UO5fYm1uuED_9m_gZ2PL05pvSl3PQqMYTcQE2-bTql-NLc2S_ASpa5a4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-QD34Ft_m4E0DfWSb5riIi-JaxBfeSpImdnV3K9sqePeHm2TTXRdE0GPCNJTJdB6dmW8AOIojX8RcNBATUQNh1tB6EGOOfMq0e0CZUvaH_kObJEn8-EivXVNYWVe71ylJq6lHzW5Y-xoUmZICG4cjMg1msbZYppDv5vahliJsQxqHYPLsAFyIHaEWNHSsFPuR57pnfj520kJNpket1Wkt_-99V8CS8zJhcygWq2BK9tfA4jfswXXw2RynrmGhYIhY96kYdKq8B5tJAl3hVk8Tw6rQS5PRqaD2F6HpL-k_VTl8HXcdmCPyj8wAT2So2-lJaDom3s0SGtwimL-VL5CVObSl7Xq3LDrdDXDfOrs7PUduJAMSAfUrRInwAqljICqF4j6XhOsdnkkVYiayUHIqfCUjGTIqDdqckiTLYq79FhEQxcJNMNMv-nILQBap2AsFE9hTWosYpLE44hnxBJNUBXgb-PU1pMLhlZuxGd10hLRsOZxqDqeWwynZBsejZ16HaB2_Up_UN5e6L7f8hXznb-SHYP787qqdti-Sy12wEBhBsGUwe2CmGrzJfTAn3qtOOTiw4vsF9u_okg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-ED34FtdnDt402Ee2aY6LuihKEXzgrSRpYld322XbXfDuDzfJdl8ggnhMmIYymSYznfm-AeA0DFwRclFHTAR1hFldn4MYc-RSpt0DypSyP_Rf7kkUha-v9GEKxW-r3UcpySGmwbA0ZeVFN1EXY-Ab1n4HRaa8wMbkiMyDRWyaBpl4_fFlZFHYhjcVm8l7ReZCbDs1r67jptANnApJ8_Oys7fVbKrU3kDN9f-_-wZYq7xP2BiayyaYk9kWWJ3iJNwGX41JShvmCvqItd_yXqtMO7ARRbAq6OpoYVjmemgyPSXUfiQ0uJPsrUxhd4JGMEukn4khpEhQu9WR0CApBmYIDZ8RTPvFB2RFCm3Ju54t8lZ7Bzw3r58ub1DVqgEJj7olokQ4ntSxEZVCcZdLwvUMT6TyMROJLzkVrpKB9BmVhoVOSZIkIdf-jPCIYv4uWMjyTO4ByAIVOr5gAjtKny6GgSwMeEIcwSRVHq4Bd7Qlsah4zE07jXY8ZmC2Go61hmOr4ZjUwNn4me6QxeNX6fPRLsbVF138Ir7_N_ETsPxw1Yzvb6O7A7DiGTuw1TGHYKHs9eURWBKDslX0jq0lfwMUA_F2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+3-algorithm+ANN+programming+to+predict+the+strength+performance+of+hydrated-lime+activated+rice+husk+ash+treated+soil&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Onyelowe%2C+Kennedy+C.&rft.au=Iqbal%2C+Mudassir&rft.au=Jalal%2C+Fazal+E.&rft.au=Onyia%2C+Michael+E.&rft.date=2021-12-01&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=4&rft.issue=4&rft.spage=259&rft.epage=274&rft_id=info:doi/10.1007%2Fs41939-021-00093-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41939_021_00093_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon