Utility of integral representations for basic hypergeometric functions and orthogonal polynomials

We describe the utility of integral representations for sums of basic hypergeometric functions. In particular we use these to derive an infinite sequence of transformations for symmetrizations over certain variables which the functions possess. These integral representations were studied by Bailey,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal Jg. 61; H. 2; S. 649 - 674
Hauptverfasser: Cohl, Howard S., Costas-Santos, Roberto S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2023
Schlagworte:
ISSN:1382-4090, 1572-9303
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We describe the utility of integral representations for sums of basic hypergeometric functions. In particular we use these to derive an infinite sequence of transformations for symmetrizations over certain variables which the functions possess. These integral representations were studied by Bailey, Slater, Askey, Roy, Gasper and Rahman and were also used to facilitate the computation of certain outstanding problems in the theory of basic hypergeometric orthogonal polynomials in the q -Askey scheme. We also generalize and give consequences and transformation formulas for some fundamental integrals connected to nonterminating basic hypergeometric series and the Askey–Wilson polynomials. We express a certain integral of a ratio of infinite q -shifted factorials as a symmetric sum of two basic hypergeometric series with argument q . The result is then expressed as a q -integral. Examples of integral representations applied to the derivation of generating functions for the Askey–Wilson polynomials are given and as well the computation of a missing generating function for the continuous dual q -Hahn polynomials.
AbstractList We describe the utility of integral representations for sums of basic hypergeometric functions. In particular we use these to derive an infinite sequence of transformations for symmetrizations over certain variables which the functions possess. These integral representations were studied by Bailey, Slater, Askey, Roy, Gasper and Rahman and were also used to facilitate the computation of certain outstanding problems in the theory of basic hypergeometric orthogonal polynomials in the q -Askey scheme. We also generalize and give consequences and transformation formulas for some fundamental integrals connected to nonterminating basic hypergeometric series and the Askey–Wilson polynomials. We express a certain integral of a ratio of infinite q -shifted factorials as a symmetric sum of two basic hypergeometric series with argument q . The result is then expressed as a q -integral. Examples of integral representations applied to the derivation of generating functions for the Askey–Wilson polynomials are given and as well the computation of a missing generating function for the continuous dual q -Hahn polynomials.
Author Cohl, Howard S.
Costas-Santos, Roberto S.
Author_xml – sequence: 1
  givenname: Howard S.
  orcidid: 0000-0002-9398-455X
  surname: Cohl
  fullname: Cohl, Howard S.
  email: howard.cohl@nist.gov
  organization: Applied and Computational Mathematics Division, National Institute of Standards and Technology
– sequence: 2
  givenname: Roberto S.
  orcidid: 0000-0002-9545-7411
  surname: Costas-Santos
  fullname: Costas-Santos, Roberto S.
  organization: Departamento de Física y Matemáticas, Universidad de Alcalá
BookMark eNp9kLtuwyAUhlGVSk3SvkAnvwAtGGPCWEW9SZG6NDMCDA6RAxaQwW9fUnfqkOlcv__o_Cuw8MEbAB4xesIIseeEMSYcohpDhCjikN6AJaashpwgsig52dSwQRzdgVVKR4RQgwhbArnPbnB5qoKtnM-mj3KoohmjScZnmV3wqbIhVkomp6vDNJrYm3AyOZbSnr2eV6TvqhDzIfTBF4UxDJMPJyeHdA9ubQnm4S-uwf7t9Xv7AXdf75_blx3UNccZ8sZQ1ZqWNop1LWuUbixVxLa1UowS3GCqO25VS7u65aWpDWsvE4L0puaMrEE96-oYUorGijG6k4yTwEhcTBKzSaKYJH5NErRAm3-QdvPXOUo3XEfJjKZyx_cmimM4x_J8ukb9ACZ7gKg
CitedBy_id crossref_primary_10_1016_j_aam_2023_102517
Cites_doi 10.1137/0516014
10.3390/sym12081290
10.1017/CBO9781107325982
10.4153/CJM-1986-030-6
10.1142/9789814434201_0013
10.1007/978-3-642-05014-5
10.1016/0377-0427(95)00249-9
10.1016/0022-247X(86)90265-9
10.1016/0021-9045(82)90069-7
10.1016/j.jmaa.2014.11.048
10.4153/CJM-2002-027-2
10.3842/SIGMA.2009.059
10.1216/RMJ-1986-16-2-365
10.4153/CMB-1988-068-6
10.4153/CJM-1990-035-4
ContentType Journal Article
Copyright This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022
Copyright_xml – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022
DBID AAYXX
CITATION
DOI 10.1007/s11139-021-00509-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 674
ExternalDocumentID 10_1007_s11139_021_00509_5
GrantInformation_xml – fundername: Agencia Estatal de Investigación
  grantid: PGC2018-096504-B-C33
  funderid: http://dx.doi.org/10.13039/501100011033
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c291t-94e5b6e654b7d674bc4f5b3f62bb7531415cd9fb65d2692bbce76b75330c82973
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000814913900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-4090
IngestDate Sat Nov 29 03:20:59 EST 2025
Tue Nov 18 20:15:31 EST 2025
Fri Feb 21 02:45:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Basic hypergeometric functions
Integral representations
Basic hypergeometric orthogonal polynomials
Generating functions
33D60
Transformations
33D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-94e5b6e654b7d674bc4f5b3f62bb7531415cd9fb65d2692bbce76b75330c82973
ORCID 0000-0002-9398-455X
0000-0002-9545-7411
PageCount 26
ParticipantIDs crossref_primary_10_1007_s11139_021_00509_5
crossref_citationtrail_10_1007_s11139_021_00509_5
springer_journals_10_1007_s11139_021_00509_5
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2023
Publisher Springer US
Publisher_xml – name: Springer US
References GasperGq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Extensions of Barnes’, Cauchy’s, and Euler’s beta integralsTopics in Mathematical Analysis1989TeaneckWorld Sci. Publ.29431410.1142/9789814434201_0013
SlaterLJGeneralized Hypergeometric Functions1966CambridgeCambridge University Press0135.28101
van de Bult, F.J., Rains, E.M.: Basic hypergeometric functions as limits of elliptic hypergeometric functions. SIGMA 5(59), 31 (2009)
IsmailMEHStantonDq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Integral and moment representations for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-orthogonal polynomialsJournal Canadien de Mathématiques [Can. J. Math.]2002544709735191391610.4153/CJM-2002-027-21009.33015
Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, vol. 96. 2nd ed. Cambridge University Press, Cambridge, With a foreword by Richard Askey (2004)
NassrallahBRahmanMProjection formulas, a reproducing kernel and a generating function for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Wilson polynomialsSIAM J. Math. Anal.198516118619777287810.1137/05160140564.33009
AskeyRRoyRMore q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-beta integralsRocky Mount. J. Math.198616236537284305710.1216/RMJ-1986-16-2-3650599.33002
CohlHSCostas-SantosRSGeLTerminating basic hypergeometric representations and transformations for the Askey–Wilson polynomialsSymmetry20201281410.3390/sym120812901456.33013
Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues. Springer Monographs in Mathematics. Springer, Berlin, With a foreword by Tom H. Koornwinder (2010)
IsmailMEHWilsonJAAsymptotic and generating relations for the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Jacobi and 4φ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{4}\varphi _{3}$$\end{document} polynomialsJ. Approx. Theory1982361435467385510.1016/0021-9045(82)90069-7
IsmailMEHLetessierJValentGWimpJTwo families of associated Wilson polynomialsJournal Canadien de Mathématiques [Can. J. Math.]1990424659695107422910.4153/CJM-1990-035-40712.33005
RahmanMSome generating functions for the associated Askey–Wilson polynomialsJ. Comput. Appl. Math.1996681–2287296141876210.1016/0377-0427(95)00249-90861.33015
BaileyWNGeneralized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics1964New YorkStechert-Hafner Inc.
AndrewsGEAskeyRRoyRSpecial Functions. Encyclopedia of Mathematics and Its Applications1999CambridgeCambridge University Press
RahmanMAn integral representation of a 10φ9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{10}\varphi _9$$\end{document} and continuous bi-orthogonal 10φ9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{10}\varphi _9$$\end{document} rational functionsCan. J. Math.198638360561878711510.4153/CJM-1986-030-6
IsmailMEHStantonDExpansions in the Askey–Wilson polynomialsJ. Math. Anal. Appl.20154241664674328658610.1016/j.jmaa.2014.11.0481309.33020
RahmanMSome extensions of Askey–Wilson’s q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-beta integral and the corresponding orthogonal systemsBulletin Canadien de. Mathématiques [Can. Math. Bull.]198831446747697157510.4153/CMB-1988-068-60673.33001
RahmanMA product formula for the continuous q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Jacobi polynomialsJ. Math. Anal. Appl.1986118230932285216310.1016/0022-247X(86)90265-90589.33009
Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and it Applications, vol. 98. Cambridge University Press, Cambridge, With two chapters by Walter Van Assche (2005)
AtakishiyevaMAtakishiyevNA non-standard generating function for continuous dual q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Hahn polynomialsRevista de Matemática: Teoría y Aplicaciones20111811111201307.33009
NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov, Release 1.1.5 of 2022-03-15. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R.Miller, B.V. Saunders, H.S. Cohl, and M.A. McClain, Eds
R Askey (509_CR2) 1986; 16
HS Cohl (509_CR5) 2020; 12
M Rahman (509_CR19) 1996; 68
GE Andrews (509_CR1) 1999
509_CR7
509_CR21
G Gasper (509_CR6) 1989
WN Bailey (509_CR4) 1964
509_CR8
M Rahman (509_CR16) 1986; 38
MEH Ismail (509_CR10) 2015; 424
M Rahman (509_CR18) 1988; 31
M Atakishiyeva (509_CR3) 2011; 18
LJ Slater (509_CR20) 1966
MEH Ismail (509_CR9) 2002; 54
MEH Ismail (509_CR12) 1990; 42
M Rahman (509_CR17) 1986; 118
B Nassrallah (509_CR14) 1985; 16
509_CR13
509_CR15
MEH Ismail (509_CR11) 1982; 36
References_xml – reference: NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov, Release 1.1.5 of 2022-03-15. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R.Miller, B.V. Saunders, H.S. Cohl, and M.A. McClain, Eds
– reference: BaileyWNGeneralized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics1964New YorkStechert-Hafner Inc.
– reference: AskeyRRoyRMore q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-beta integralsRocky Mount. J. Math.198616236537284305710.1216/RMJ-1986-16-2-3650599.33002
– reference: RahmanMA product formula for the continuous q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Jacobi polynomialsJ. Math. Anal. Appl.1986118230932285216310.1016/0022-247X(86)90265-90589.33009
– reference: Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, vol. 96. 2nd ed. Cambridge University Press, Cambridge, With a foreword by Richard Askey (2004)
– reference: GasperGq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Extensions of Barnes’, Cauchy’s, and Euler’s beta integralsTopics in Mathematical Analysis1989TeaneckWorld Sci. Publ.29431410.1142/9789814434201_0013
– reference: AtakishiyevaMAtakishiyevNA non-standard generating function for continuous dual q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Hahn polynomialsRevista de Matemática: Teoría y Aplicaciones20111811111201307.33009
– reference: RahmanMSome generating functions for the associated Askey–Wilson polynomialsJ. Comput. Appl. Math.1996681–2287296141876210.1016/0377-0427(95)00249-90861.33015
– reference: AndrewsGEAskeyRRoyRSpecial Functions. Encyclopedia of Mathematics and Its Applications1999CambridgeCambridge University Press
– reference: IsmailMEHLetessierJValentGWimpJTwo families of associated Wilson polynomialsJournal Canadien de Mathématiques [Can. J. Math.]1990424659695107422910.4153/CJM-1990-035-40712.33005
– reference: RahmanMAn integral representation of a 10φ9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{10}\varphi _9$$\end{document} and continuous bi-orthogonal 10φ9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{10}\varphi _9$$\end{document} rational functionsCan. J. Math.198638360561878711510.4153/CJM-1986-030-6
– reference: RahmanMSome extensions of Askey–Wilson’s q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-beta integral and the corresponding orthogonal systemsBulletin Canadien de. Mathématiques [Can. Math. Bull.]198831446747697157510.4153/CMB-1988-068-60673.33001
– reference: CohlHSCostas-SantosRSGeLTerminating basic hypergeometric representations and transformations for the Askey–Wilson polynomialsSymmetry20201281410.3390/sym120812901456.33013
– reference: IsmailMEHStantonDExpansions in the Askey–Wilson polynomialsJ. Math. Anal. Appl.20154241664674328658610.1016/j.jmaa.2014.11.0481309.33020
– reference: IsmailMEHStantonDq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Integral and moment representations for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-orthogonal polynomialsJournal Canadien de Mathématiques [Can. J. Math.]2002544709735191391610.4153/CJM-2002-027-21009.33015
– reference: Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and it Applications, vol. 98. Cambridge University Press, Cambridge, With two chapters by Walter Van Assche (2005)
– reference: IsmailMEHWilsonJAAsymptotic and generating relations for the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Jacobi and 4φ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{4}\varphi _{3}$$\end{document} polynomialsJ. Approx. Theory1982361435467385510.1016/0021-9045(82)90069-7
– reference: van de Bult, F.J., Rains, E.M.: Basic hypergeometric functions as limits of elliptic hypergeometric functions. SIGMA 5(59), 31 (2009)
– reference: Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues. Springer Monographs in Mathematics. Springer, Berlin, With a foreword by Tom H. Koornwinder (2010)
– reference: SlaterLJGeneralized Hypergeometric Functions1966CambridgeCambridge University Press0135.28101
– reference: NassrallahBRahmanMProjection formulas, a reproducing kernel and a generating function for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Wilson polynomialsSIAM J. Math. Anal.198516118619777287810.1137/05160140564.33009
– volume-title: Generalized Hypergeometric Functions
  year: 1966
  ident: 509_CR20
– volume: 18
  start-page: 111
  issue: 1
  year: 2011
  ident: 509_CR3
  publication-title: Revista de Matemática: Teoría y Aplicaciones
– volume: 16
  start-page: 186
  issue: 1
  year: 1985
  ident: 509_CR14
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0516014
– volume: 12
  start-page: 14
  issue: 8
  year: 2020
  ident: 509_CR5
  publication-title: Symmetry
  doi: 10.3390/sym12081290
– ident: 509_CR8
  doi: 10.1017/CBO9781107325982
– volume: 38
  start-page: 605
  issue: 3
  year: 1986
  ident: 509_CR16
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1986-030-6
– start-page: 294
  volume-title: Topics in Mathematical Analysis
  year: 1989
  ident: 509_CR6
  doi: 10.1142/9789814434201_0013
– ident: 509_CR13
  doi: 10.1007/978-3-642-05014-5
– volume: 68
  start-page: 287
  issue: 1–2
  year: 1996
  ident: 509_CR19
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(95)00249-9
– volume: 118
  start-page: 309
  issue: 2
  year: 1986
  ident: 509_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(86)90265-9
– volume: 36
  start-page: 43
  issue: 1
  year: 1982
  ident: 509_CR11
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(82)90069-7
– volume: 424
  start-page: 664
  issue: 1
  year: 2015
  ident: 509_CR10
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.11.048
– ident: 509_CR15
– volume: 54
  start-page: 709
  issue: 4
  year: 2002
  ident: 509_CR9
  publication-title: Journal Canadien de Mathématiques [Can. J. Math.]
  doi: 10.4153/CJM-2002-027-2
– ident: 509_CR21
  doi: 10.3842/SIGMA.2009.059
– volume-title: Special Functions. Encyclopedia of Mathematics and Its Applications
  year: 1999
  ident: 509_CR1
– volume: 16
  start-page: 365
  issue: 2
  year: 1986
  ident: 509_CR2
  publication-title: Rocky Mount. J. Math.
  doi: 10.1216/RMJ-1986-16-2-365
– volume: 31
  start-page: 467
  issue: 4
  year: 1988
  ident: 509_CR18
  publication-title: Bulletin Canadien de. Mathématiques [Can. Math. Bull.]
  doi: 10.4153/CMB-1988-068-6
– volume-title: Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics
  year: 1964
  ident: 509_CR4
– ident: 509_CR7
– volume: 42
  start-page: 659
  issue: 4
  year: 1990
  ident: 509_CR12
  publication-title: Journal Canadien de Mathématiques [Can. J. Math.]
  doi: 10.4153/CJM-1990-035-4
SSID ssj0004037
Score 2.315299
Snippet We describe the utility of integral representations for sums of basic hypergeometric functions. In particular we use these to derive an infinite sequence of...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 649
SubjectTerms Combinatorics
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
Title Utility of integral representations for basic hypergeometric functions and orthogonal polynomials
URI https://link.springer.com/article/10.1007/s11139-021-00509-5
Volume 61
WOSCitedRecordID wos000814913900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1572-9303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004037
  issn: 1382-4090
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7G-2IM3Xchjd9M9ili8WESt9Ba6r1qoSWmi0H_vbrJpKYigp8BmEsLsbGaGme8bgCuSRMa6CYlVxCkmJlDYSjJMhBQ0jrge-mETSa_XGQz4kweFFU23e1OSrP7US7BbaKMV7FoKKtISTNdhw1477jg-v7wt0ZBBxZTpyPVsdsQDD5X5-R2r7mi1Flq5mO7u_z5uD3Z8SIluaxvYhzWdHcD244KPtTiEYb90PbBzlBvkCSImqOKzbLBHWYFs-IqsUxtL9G6T09lI5x9u3JZEzvfVIsNMIVfoyUcugEfTfDJ3sGZrwkfQ796_3j1gP1wBy4iHJeZEU8E0o0QkiiV2b4ihIjYsEsKmMKF17FJxIxhVEeN2UeqEuTtxIB0cNz6GVpZn-gSQUHZZS6NMLInQcUckOqSG6FgoJcKoDWGj41R65nE3AGOSLjmTnfpSq760Ul9K23C9eGZa8278Kn3TbEvqz2Dxi_jp38TPYMsNma8bxM6hVc4-9QVsyq9yXMwuK-P7BhBX1ag
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBNA2ubpMujiGPiNkQ32VtZbnMw27FWYf_epE03BjLQ1_S0lJPTfueQ830HgBsc-trAhEDSZwRhXZPIWFKEueAk8JkauGETYadT7_fZiyOFpWW3e3kkmf-pF2Q3z2QryLYU5KIliKyDDWwQyzbyvb69L9iQtVwp04rrmeqI1RxV5vdnLMPR8lloDjGNvf-93D7YdSklvC9i4ACsqfgQ7LTneqzpERj0MtsDO4OJhk4gYgxzPcuSexSn0KSv0IDaSMAPU5xOhyr5tOO2BLTYV5gMYgntQU8ytAk8nCTjmaU1mxA-Br3GY_ehidxwBSR85mWIYUU4VZRgHkoamr3BmvBAU59zU8J4BtiFZJpTIn3KzKJQIbVXgpqwdNzgBFTiJFanAHJplpXQUgcCcxXUeag8orEKuJTc86vAK30cCac8bgdgjKOFZrJ1X2TcF-Xui0gV3M7vmRS6Gyut78ptidw3mK4wP_ub-TXYanbbraj11Hk-B9t24HzRLHYBKtn0S12CTfGdjdLpVR6IPx2s2Iw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1ife_CmS_PYTbpHUYuiloJWegvdVy3UpDRR6L93N0lbC1IQr5vZEGYnzAw73_cBXJDQ0yZNCCw9RjHRjsTGMsCEC059j6luKTYRNpv1Toe1fqD482n3yZVkgWmwLE1xVhtKXZsB31xTuWA7XpATmGC6DCvEigbZfv3lbYaMdHLWTEu0Zzol5pSwmd_fMZ-a5u9F83TT2Pr_h27DZllqousiNnZgScW7sPE85WlN96Dbzuxs7BglGpXEEQOU81xOMElxikxZi0yy6wv0bprWUU8lH1aGSyCbEwuTbiyRvQBKerawR8NkMLZwZxPa-9Bu3L3e3ONSdAELj7kZZkRRHqiAEh7KIDRnRjTlvg48zk1r45qELyTTPKDSC5hZFCoM7BPfERam6x9AJU5idQiIS7OshJbaF4Qrv85D5VJNlM-l5K5XBXfi70iUjORWGGMQzbiUrfsi474od19Eq3A53TMs-DgWWl9Njigq_810gfnR38zPYa1124ieHpqPx7BudeiLGbITqGSjT3UKq-Ir66ejszwmvwGD1-Fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utility+of+integral+representations+for+basic+hypergeometric+functions+and+orthogonal+polynomials&rft.jtitle=The+Ramanujan+journal&rft.au=Cohl%2C+Howard+S.&rft.au=Costas-Santos%2C+Roberto+S.&rft.date=2023-06-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=61&rft.issue=2&rft.spage=649&rft.epage=674&rft_id=info:doi/10.1007%2Fs11139-021-00509-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_021_00509_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon