Fast Adaptive Active Noise Control Based on Modified Model-Agnostic Meta-Learning Algorithm

With the advent of efficient low-cost processors and electroacoustic components, there is renewed interest in the practical implementation of active noise control (ANC). However, the slow convergence of conventional adaptive algorithms deployed in ANC restricts its handling of typical amplitude-vary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters Jg. 28; S. 593 - 597
Hauptverfasser: Shi, Dongyuan, Gan, Woon-Seng, Lam, Bhan, Ooi, Kenneth
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1070-9908, 1558-2361
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the advent of efficient low-cost processors and electroacoustic components, there is renewed interest in the practical implementation of active noise control (ANC). However, the slow convergence of conventional adaptive algorithms deployed in ANC restricts its handling of typical amplitude-varying noise. Hence, we proposed a modified model-agnostic, meta-learning (MAML) strategy to obtain an initial control filter, which accelerates an adaptive algorithm's convergence when dealing with different types of amplitude-varying low-frequency noise. Numerical simulations with measured paths and real noise sources demonstrate its convergence acceleration efficacy in practical scenarios.
AbstractList With the advent of efficient low-cost processors and electroacoustic components, there is renewed interest in the practical implementation of active noise control (ANC). However, the slow convergence of conventional adaptive algorithms deployed in ANC restricts its handling of typical amplitude-varying noise. Hence, we proposed a modified model-agnostic, meta-learning (MAML) strategy to obtain an initial control filter, which accelerates an adaptive algorithm's convergence when dealing with different types of amplitude-varying low-frequency noise. Numerical simulations with measured paths and real noise sources demonstrate its convergence acceleration efficacy in practical scenarios.
Author Ooi, Kenneth
Shi, Dongyuan
Gan, Woon-Seng
Lam, Bhan
Author_xml – sequence: 1
  givenname: Dongyuan
  orcidid: 0000-0003-0768-6386
  surname: Shi
  fullname: Shi, Dongyuan
  email: DSHI003@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Woon-Seng
  orcidid: 0000-0002-7143-1823
  surname: Gan
  fullname: Gan, Woon-Seng
  email: ewsgan@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Bhan
  orcidid: 0000-0001-5193-6560
  surname: Lam
  fullname: Lam, Bhan
  email: bhanlam@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Kenneth
  surname: Ooi
  fullname: Ooi, Kenneth
  email: wooi002@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
BookMark eNp9kDFPwzAUhC0EEm1hR2KJxJzybCeOPYaKAlILSHRjsIxjF1dpXGwXiX9PSisGBqa74b57ejdEx53vDEIXGMYYg7ievTyPCRA8psCKqmRHaIDLkueEMnzce6ggFwL4KRrGuAIAjnk5QK9TFVNWN2qT3KfJav0jj95Fk018l4JvsxsVTZP5Lpv7xlnX-96YNq-XnY_J6WxukspnRoXOdcusbpc-uPS-PkMnVrXRnB90hBbT28XkPp893T1M6lmuicApF0RYgRvSUK1JaQ0H3hAQFaVGMYyJqJRmYHnJCl5ZsForzd9EoxpScmXpCF3tazfBf2xNTHLlt6HrL0pSQt9eVLjoU2yf0sHHGIyV2iWV3O5H5VqJQe52lP2OcrejPOzYg_AH3AS3VuHrP-RyjzhjzG9c0IoxAPoN2WR_Rg
CODEN ISPLEM
CitedBy_id crossref_primary_10_1109_LSP_2025_3576033
crossref_primary_10_1109_TASLPRO_2025_3570939
crossref_primary_10_21595_jve_2025_25037
crossref_primary_10_1016_j_sigpro_2021_108222
crossref_primary_10_1109_LSP_2022_3165758
crossref_primary_10_1016_j_sigpro_2024_109525
crossref_primary_10_1109_LSP_2022_3144839
crossref_primary_10_1109_LSP_2024_3465889
crossref_primary_10_1007_s12239_024_00207_3
crossref_primary_10_1109_JSTSP_2021_3137028
crossref_primary_10_1109_LSP_2021_3093862
crossref_primary_10_1177_00202940221105088
crossref_primary_10_1016_j_neunet_2024_106145
crossref_primary_10_1109_LSP_2022_3226118
crossref_primary_10_1109_LSP_2023_3334695
Cites_doi 10.1109/LSP.2012.2210213
10.1016/j.apacoust.2018.10.027
10.1109/MSP.2013.2242394
10.1109/79.248551
10.1109/TASLP.2020.2989582
10.1109/ICASSP40776.2020.9053112
10.1109/MMAR.2018.8485802
10.1016/j.apacoust.2008.10.009
10.1109/TASLP.2020.3012056
10.1109/ICASSP.1993.319085
10.1109/TVLSI.2019.2956524
10.1016/j.ifacol.2017.08.1277
10.1109/APCCAS.2014.7032814
10.1038/s41598-020-66563-z
10.1016/j.apacoust.2018.11.010
10.1016/j.sigpro.2019.107348
10.1016/j.ymssp.2020.106878
10.1109/5.763310
10.1109/LSP.2020.3029703
10.1088/1757-899X/237/1/012015
10.1016/j.conengprac.2003.11.006
10.1109/ICASSP40776.2020.9053601
10.1002/9780470745977
10.1016/j.apacoust.2020.107712
10.3390/app10196817
10.1109/IWAENC.2018.8521391
10.1016/j.ymssp.2020.107346
10.1017/ATSIP.2012.4
10.1109/GCIS.2010.172
10.1109/APSIPAASC47483.2019.9023193
10.1109/LSP.2015.2509007
10.1121/1.3596457
10.1109/LSP.2017.2718564
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2021.3064756
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 597
ExternalDocumentID 10_1109_LSP_2021_3064756
9376600
Genre orig-research
GrantInformation_xml – fundername: Prime Ministers Office under the Cities of Tomorrow CoT Research Programme
  grantid: COT-V4-2019-1
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-929f91d2d3cc25fe808d209733ea611297ac60f856487f0fccac8b9dad258af3
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637618400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Mon Jun 30 10:15:40 EDT 2025
Sat Nov 29 03:38:52 EST 2025
Tue Nov 18 22:30:42 EST 2025
Wed Aug 27 02:44:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-929f91d2d3cc25fe808d209733ea611297ac60f856487f0fccac8b9dad258af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0768-6386
0000-0002-7143-1823
0000-0001-5193-6560
PQID 2509294714
PQPubID 75747
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LSP_2021_3064756
ieee_primary_9376600
proquest_journals_2509294714
crossref_primary_10_1109_LSP_2021_3064756
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
finn (ref39) 0
ref36
ref14
ref31
ref33
ref11
ref32
ref10
goodfellow (ref45) 2016; 1
paulo (ref30) 0
ref1
ref17
ref38
ref16
kajikawa (ref2) 2012; 1
ref19
wu (ref41) 2020
shubair (ref35) 0; 4
ref18
petersen (ref46) 2012
s haykin (ref9) 2008
philip (ref4) 1991
colin (ref5) 2002
ref24
ref23
kuo (ref43) 1996; 4
ref26
ref20
ref42
glorot (ref34) 0
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
kean (ref6) 2003
ref40
stephen (ref3) 1993; 10
dongyuan (ref25) 0
References_xml – start-page: 1126
  year: 0
  ident: ref39
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Int Conf Mach Learn
– ident: ref29
  doi: 10.1109/LSP.2012.2210213
– ident: ref28
  doi: 10.1016/j.apacoust.2018.10.027
– ident: ref44
  doi: 10.1109/MSP.2013.2242394
– volume: 10
  start-page: 12
  year: 1993
  ident: ref3
  article-title: Active noise control
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/79.248551
– year: 2003
  ident: ref6
  publication-title: Active Noise Control
– ident: ref42
  doi: 10.1109/TASLP.2020.2989582
– start-page: 249
  year: 0
  ident: ref34
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref40
  doi: 10.1109/ICASSP40776.2020.9053112
– volume: 1
  year: 2016
  ident: ref45
  publication-title: Deep Learning
– ident: ref37
  doi: 10.1109/MMAR.2018.8485802
– ident: ref8
  doi: 10.1016/j.apacoust.2008.10.009
– ident: ref20
  doi: 10.1109/TASLP.2020.3012056
– ident: ref27
  doi: 10.1109/ICASSP.1993.319085
– ident: ref19
  doi: 10.1109/TVLSI.2019.2956524
– ident: ref36
  doi: 10.1016/j.ifacol.2017.08.1277
– ident: ref13
  doi: 10.1109/APCCAS.2014.7032814
– ident: ref18
  doi: 10.1038/s41598-020-66563-z
– ident: ref10
  doi: 10.1016/j.apacoust.2018.11.010
– start-page: 709
  year: 0
  ident: ref25
  article-title: Active noise control based on the momentum multichannel normalized filtered-x least mean square algorithm
  publication-title: Proc InterNoise20
– ident: ref24
  doi: 10.1016/j.sigpro.2019.107348
– ident: ref7
  doi: 10.1016/j.ymssp.2020.106878
– ident: ref1
  doi: 10.1109/5.763310
– year: 2008
  ident: ref9
  publication-title: Adaptive Filter Theory
– ident: ref31
  doi: 10.1109/LSP.2020.3029703
– volume: 4
  start-page: 2
  year: 0
  ident: ref35
  article-title: Robust adaptive beamforming using LMS algorithm with SMI initialization
  publication-title: Proc IEEE Antennas Propag Soc Int Symp
– ident: ref15
  doi: 10.1088/1757-899X/237/1/012015
– year: 2012
  ident: ref46
  article-title: The Matrix Cookbook
– ident: ref11
  doi: 10.1016/j.conengprac.2003.11.006
– ident: ref14
  doi: 10.1109/ICASSP40776.2020.9053601
– start-page: 1
  year: 0
  ident: ref30
  article-title: A Kalman filter approach to active noise control
  publication-title: Proc 10th Eur Signal Process Conf
– ident: ref26
  doi: 10.1002/9780470745977
– ident: ref12
  doi: 10.1016/j.apacoust.2020.107712
– ident: ref16
  doi: 10.3390/app10196817
– volume: 4
  year: 1996
  ident: ref43
  publication-title: Active Noise Control Systems
– ident: ref33
  doi: 10.1109/IWAENC.2018.8521391
– year: 2020
  ident: ref41
  article-title: One shot learning for speech separation
– ident: ref23
  doi: 10.1016/j.ymssp.2020.107346
– volume: 1
  start-page: 1
  year: 2012
  ident: ref2
  article-title: Recent advances on active noise control: Open issues and innovative applications
  publication-title: APSIPA Trans Signal Inf Process
  doi: 10.1017/ATSIP.2012.4
– ident: ref38
  doi: 10.1109/GCIS.2010.172
– ident: ref21
  doi: 10.1109/APSIPAASC47483.2019.9023193
– ident: ref22
  doi: 10.1109/LSP.2015.2509007
– ident: ref17
  doi: 10.1121/1.3596457
– year: 2002
  ident: ref5
  publication-title: Understanding Active Noise Cancellation
– ident: ref32
  doi: 10.1109/LSP.2017.2718564
– year: 1991
  ident: ref4
  publication-title: Active Control of Sound
SSID ssj0008185
Score 2.4054427
Snippet With the advent of efficient low-cost processors and electroacoustic components, there is renewed interest in the practical implementation of active noise...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 593
SubjectTerms Acceleration
Active noise control
Adaptation models
Adaptive algorithms
Adaptive control
Adaptive filters
Adaptive systems
Amplitudes
control filter initialization
Convergence
Cost function
fast adaptation
FxLMS
LF noise
Machine learning
Mathematical models
model-agnostic meta-learning
Noise control
Noise measurement
Signal processing algorithms
Title Fast Adaptive Active Noise Control Based on Modified Model-Agnostic Meta-Learning Algorithm
URI https://ieeexplore.ieee.org/document/9376600
https://www.proquest.com/docview/2509294714
Volume 28
WOSCitedRecordID wos000637618400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8aAHX2hE0fTgxcTCvh_HlUg8CCGRA4mHTZ9IgiyBxd_vdHchJBoTbz20zW6_3fm-aaczAPfc5oFAz4EK6XJqUpzTyPME9YXn85BLZfu8KDYRDofRZBKPavC4uwujlCqCz1THNIuzfJmJjdkq6yKVBkjQdaiHYVDe1dpZXUM8ZXyhRdHCRtsjSSvuvr6N0BF07I5R26EpVb1HQUVNlR-GuGCX_sn_nusUjisVSZIS9jOoqcU5HO3lFmzCe5-tc5JItjQGjSSFXSPDbLZWpFfGp5MnpDBJsgUZZHKmUYyahprTxETf4dRkoHJGqxSsU5LMp9lqln98XsC4_zzuvdCqkgIVTmznFDWQjm3pSFcIx9cqsiLpmEQ9rmKBUVwhE4GlIz9A_0VbGmEVEY8lk44fMe1eQmORLdQVEBRc2meMo45THoLMcVZPaomONHqiUrWgu13bVFRZxk2xi3laeBtWnCIaqUEjrdBowcNuxLLMsPFH36ZZ_V2_auFb0N7Cl1a_4DpFbYevjdzrXf8-6gYOzdzlfkobGvlqo27hQHzls_Xqrvi6vgHI-cxo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7qA9SDb7E-9-BFcG2S5nmMYqnYloI9FDyEfdZCbaSJ_n5nkzQIiuBtD5tNsl8y3ze7szMAV9zmvkDPgQrZ5tSkOKeh6wrqCdfjAZfK9nhRbCIYDMLxOBo24KY-C6OUKoLP1K1pFnv5MhUfZqmshVTqI0GvwJqpnFWd1qrtrqGeMsLQomhjw-WmpBW1es9DdAUd-9bo7cAUq_5GQkVVlR-muOCXzs7_nmwXtisdSeIS-D1oqPk-bH3LLngALx2W5SSW7N2YNBIXlo0M0mmmyH0ZoU7ukMQkSeekn8qpRjlqGmpGYxN_h0OTvsoZrZKwTkg8m6SLaf76dgijzsPovkurWgpUOJGdU1RBOrKlI9tCOJ5WoRVKx6TqaSvmG80VMOFbOvR89GC0pRFYEfJIMul4IdPtI1idp3N1DAQll_YY46jklIswcxzVlVqiK42-qFRNaC3nNhFVnnFT7mKWFP6GFSWIRmLQSCo0mnBdX_Fe5tj4o--Bmf26XzXxTThbwpdUP2GWoLrD10b2dU9-v-oSNrqjfi_pPQ6eTmHT3KdcXTmD1Xzxoc5hXXzm02xxUXxpX5phz7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Adaptive+Active+Noise+Control+Based+on+Modified+Model-Agnostic+Meta-Learning+Algorithm&rft.jtitle=IEEE+signal+processing+letters&rft.au=Shi%2C+Dongyuan&rft.au=Gan%2C+Woon-Seng&rft.au=Lam%2C+Bhan&rft.au=Ooi%2C+Kenneth&rft.date=2021&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=28&rft.spage=593&rft.epage=597&rft_id=info:doi/10.1109%2FLSP.2021.3064756&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2021_3064756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon