Fast Adaptive Active Noise Control Based on Modified Model-Agnostic Meta-Learning Algorithm
With the advent of efficient low-cost processors and electroacoustic components, there is renewed interest in the practical implementation of active noise control (ANC). However, the slow convergence of conventional adaptive algorithms deployed in ANC restricts its handling of typical amplitude-vary...
Gespeichert in:
| Veröffentlicht in: | IEEE signal processing letters Jg. 28; S. 593 - 597 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1070-9908, 1558-2361 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the advent of efficient low-cost processors and electroacoustic components, there is renewed interest in the practical implementation of active noise control (ANC). However, the slow convergence of conventional adaptive algorithms deployed in ANC restricts its handling of typical amplitude-varying noise. Hence, we proposed a modified model-agnostic, meta-learning (MAML) strategy to obtain an initial control filter, which accelerates an adaptive algorithm's convergence when dealing with different types of amplitude-varying low-frequency noise. Numerical simulations with measured paths and real noise sources demonstrate its convergence acceleration efficacy in practical scenarios. |
|---|---|
| AbstractList | With the advent of efficient low-cost processors and electroacoustic components, there is renewed interest in the practical implementation of active noise control (ANC). However, the slow convergence of conventional adaptive algorithms deployed in ANC restricts its handling of typical amplitude-varying noise. Hence, we proposed a modified model-agnostic, meta-learning (MAML) strategy to obtain an initial control filter, which accelerates an adaptive algorithm's convergence when dealing with different types of amplitude-varying low-frequency noise. Numerical simulations with measured paths and real noise sources demonstrate its convergence acceleration efficacy in practical scenarios. |
| Author | Ooi, Kenneth Shi, Dongyuan Gan, Woon-Seng Lam, Bhan |
| Author_xml | – sequence: 1 givenname: Dongyuan orcidid: 0000-0003-0768-6386 surname: Shi fullname: Shi, Dongyuan email: DSHI003@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Woon-Seng orcidid: 0000-0002-7143-1823 surname: Gan fullname: Gan, Woon-Seng email: ewsgan@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Bhan orcidid: 0000-0001-5193-6560 surname: Lam fullname: Lam, Bhan email: bhanlam@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Kenneth surname: Ooi fullname: Ooi, Kenneth email: wooi002@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore |
| BookMark | eNp9kDFPwzAUhC0EEm1hR2KJxJzybCeOPYaKAlILSHRjsIxjF1dpXGwXiX9PSisGBqa74b57ejdEx53vDEIXGMYYg7ievTyPCRA8psCKqmRHaIDLkueEMnzce6ggFwL4KRrGuAIAjnk5QK9TFVNWN2qT3KfJav0jj95Fk018l4JvsxsVTZP5Lpv7xlnX-96YNq-XnY_J6WxukspnRoXOdcusbpc-uPS-PkMnVrXRnB90hBbT28XkPp893T1M6lmuicApF0RYgRvSUK1JaQ0H3hAQFaVGMYyJqJRmYHnJCl5ZsForzd9EoxpScmXpCF3tazfBf2xNTHLlt6HrL0pSQt9eVLjoU2yf0sHHGIyV2iWV3O5H5VqJQe52lP2OcrejPOzYg_AH3AS3VuHrP-RyjzhjzG9c0IoxAPoN2WR_Rg |
| CODEN | ISPLEM |
| CitedBy_id | crossref_primary_10_1109_LSP_2025_3576033 crossref_primary_10_1109_TASLPRO_2025_3570939 crossref_primary_10_21595_jve_2025_25037 crossref_primary_10_1016_j_sigpro_2021_108222 crossref_primary_10_1109_LSP_2022_3165758 crossref_primary_10_1016_j_sigpro_2024_109525 crossref_primary_10_1109_LSP_2022_3144839 crossref_primary_10_1109_LSP_2024_3465889 crossref_primary_10_1007_s12239_024_00207_3 crossref_primary_10_1109_JSTSP_2021_3137028 crossref_primary_10_1109_LSP_2021_3093862 crossref_primary_10_1177_00202940221105088 crossref_primary_10_1016_j_neunet_2024_106145 crossref_primary_10_1109_LSP_2022_3226118 crossref_primary_10_1109_LSP_2023_3334695 |
| Cites_doi | 10.1109/LSP.2012.2210213 10.1016/j.apacoust.2018.10.027 10.1109/MSP.2013.2242394 10.1109/79.248551 10.1109/TASLP.2020.2989582 10.1109/ICASSP40776.2020.9053112 10.1109/MMAR.2018.8485802 10.1016/j.apacoust.2008.10.009 10.1109/TASLP.2020.3012056 10.1109/ICASSP.1993.319085 10.1109/TVLSI.2019.2956524 10.1016/j.ifacol.2017.08.1277 10.1109/APCCAS.2014.7032814 10.1038/s41598-020-66563-z 10.1016/j.apacoust.2018.11.010 10.1016/j.sigpro.2019.107348 10.1016/j.ymssp.2020.106878 10.1109/5.763310 10.1109/LSP.2020.3029703 10.1088/1757-899X/237/1/012015 10.1016/j.conengprac.2003.11.006 10.1109/ICASSP40776.2020.9053601 10.1002/9780470745977 10.1016/j.apacoust.2020.107712 10.3390/app10196817 10.1109/IWAENC.2018.8521391 10.1016/j.ymssp.2020.107346 10.1017/ATSIP.2012.4 10.1109/GCIS.2010.172 10.1109/APSIPAASC47483.2019.9023193 10.1109/LSP.2015.2509007 10.1121/1.3596457 10.1109/LSP.2017.2718564 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LSP.2021.3064756 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2361 |
| EndPage | 597 |
| ExternalDocumentID | 10_1109_LSP_2021_3064756 9376600 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Prime Ministers Office under the Cities of Tomorrow CoT Research Programme grantid: COT-V4-2019-1 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-929f91d2d3cc25fe808d209733ea611297ac60f856487f0fccac8b9dad258af3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637618400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1070-9908 |
| IngestDate | Mon Jun 30 10:15:40 EDT 2025 Sat Nov 29 03:38:52 EST 2025 Tue Nov 18 22:30:42 EST 2025 Wed Aug 27 02:44:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-929f91d2d3cc25fe808d209733ea611297ac60f856487f0fccac8b9dad258af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0768-6386 0000-0002-7143-1823 0000-0001-5193-6560 |
| PQID | 2509294714 |
| PQPubID | 75747 |
| PageCount | 5 |
| ParticipantIDs | crossref_citationtrail_10_1109_LSP_2021_3064756 ieee_primary_9376600 proquest_journals_2509294714 crossref_primary_10_1109_LSP_2021_3064756 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE signal processing letters |
| PublicationTitleAbbrev | LSP |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref37 ref15 finn (ref39) 0 ref36 ref14 ref31 ref33 ref11 ref32 ref10 goodfellow (ref45) 2016; 1 paulo (ref30) 0 ref1 ref17 ref38 ref16 kajikawa (ref2) 2012; 1 ref19 wu (ref41) 2020 shubair (ref35) 0; 4 ref18 petersen (ref46) 2012 s haykin (ref9) 2008 philip (ref4) 1991 colin (ref5) 2002 ref24 ref23 kuo (ref43) 1996; 4 ref26 ref20 ref42 glorot (ref34) 0 ref22 ref44 ref21 ref28 ref27 ref29 ref8 ref7 kean (ref6) 2003 ref40 stephen (ref3) 1993; 10 dongyuan (ref25) 0 |
| References_xml | – start-page: 1126 year: 0 ident: ref39 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: Int Conf Mach Learn – ident: ref29 doi: 10.1109/LSP.2012.2210213 – ident: ref28 doi: 10.1016/j.apacoust.2018.10.027 – ident: ref44 doi: 10.1109/MSP.2013.2242394 – volume: 10 start-page: 12 year: 1993 ident: ref3 article-title: Active noise control publication-title: IEEE Signal Process Mag doi: 10.1109/79.248551 – year: 2003 ident: ref6 publication-title: Active Noise Control – ident: ref42 doi: 10.1109/TASLP.2020.2989582 – start-page: 249 year: 0 ident: ref34 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref40 doi: 10.1109/ICASSP40776.2020.9053112 – volume: 1 year: 2016 ident: ref45 publication-title: Deep Learning – ident: ref37 doi: 10.1109/MMAR.2018.8485802 – ident: ref8 doi: 10.1016/j.apacoust.2008.10.009 – ident: ref20 doi: 10.1109/TASLP.2020.3012056 – ident: ref27 doi: 10.1109/ICASSP.1993.319085 – ident: ref19 doi: 10.1109/TVLSI.2019.2956524 – ident: ref36 doi: 10.1016/j.ifacol.2017.08.1277 – ident: ref13 doi: 10.1109/APCCAS.2014.7032814 – ident: ref18 doi: 10.1038/s41598-020-66563-z – ident: ref10 doi: 10.1016/j.apacoust.2018.11.010 – start-page: 709 year: 0 ident: ref25 article-title: Active noise control based on the momentum multichannel normalized filtered-x least mean square algorithm publication-title: Proc InterNoise20 – ident: ref24 doi: 10.1016/j.sigpro.2019.107348 – ident: ref7 doi: 10.1016/j.ymssp.2020.106878 – ident: ref1 doi: 10.1109/5.763310 – year: 2008 ident: ref9 publication-title: Adaptive Filter Theory – ident: ref31 doi: 10.1109/LSP.2020.3029703 – volume: 4 start-page: 2 year: 0 ident: ref35 article-title: Robust adaptive beamforming using LMS algorithm with SMI initialization publication-title: Proc IEEE Antennas Propag Soc Int Symp – ident: ref15 doi: 10.1088/1757-899X/237/1/012015 – year: 2012 ident: ref46 article-title: The Matrix Cookbook – ident: ref11 doi: 10.1016/j.conengprac.2003.11.006 – ident: ref14 doi: 10.1109/ICASSP40776.2020.9053601 – start-page: 1 year: 0 ident: ref30 article-title: A Kalman filter approach to active noise control publication-title: Proc 10th Eur Signal Process Conf – ident: ref26 doi: 10.1002/9780470745977 – ident: ref12 doi: 10.1016/j.apacoust.2020.107712 – ident: ref16 doi: 10.3390/app10196817 – volume: 4 year: 1996 ident: ref43 publication-title: Active Noise Control Systems – ident: ref33 doi: 10.1109/IWAENC.2018.8521391 – year: 2020 ident: ref41 article-title: One shot learning for speech separation – ident: ref23 doi: 10.1016/j.ymssp.2020.107346 – volume: 1 start-page: 1 year: 2012 ident: ref2 article-title: Recent advances on active noise control: Open issues and innovative applications publication-title: APSIPA Trans Signal Inf Process doi: 10.1017/ATSIP.2012.4 – ident: ref38 doi: 10.1109/GCIS.2010.172 – ident: ref21 doi: 10.1109/APSIPAASC47483.2019.9023193 – ident: ref22 doi: 10.1109/LSP.2015.2509007 – ident: ref17 doi: 10.1121/1.3596457 – year: 2002 ident: ref5 publication-title: Understanding Active Noise Cancellation – ident: ref32 doi: 10.1109/LSP.2017.2718564 – year: 1991 ident: ref4 publication-title: Active Control of Sound |
| SSID | ssj0008185 |
| Score | 2.4054427 |
| Snippet | With the advent of efficient low-cost processors and electroacoustic components, there is renewed interest in the practical implementation of active noise... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 593 |
| SubjectTerms | Acceleration Active noise control Adaptation models Adaptive algorithms Adaptive control Adaptive filters Adaptive systems Amplitudes control filter initialization Convergence Cost function fast adaptation FxLMS LF noise Machine learning Mathematical models model-agnostic meta-learning Noise control Noise measurement Signal processing algorithms |
| Title | Fast Adaptive Active Noise Control Based on Modified Model-Agnostic Meta-Learning Algorithm |
| URI | https://ieeexplore.ieee.org/document/9376600 https://www.proquest.com/docview/2509294714 |
| Volume | 28 |
| WOSCitedRecordID | wos000637618400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2361 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008185 issn: 1070-9908 databaseCode: RIE dateStart: 19940101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8aAHX2hE0fTgxcTCvh_HlUg8CCGRA4mHTZ9IgiyBxd_vdHchJBoTbz20zW6_3fm-aaczAPfc5oFAz4EK6XJqUpzTyPME9YXn85BLZfu8KDYRDofRZBKPavC4uwujlCqCz1THNIuzfJmJjdkq6yKVBkjQdaiHYVDe1dpZXUM8ZXyhRdHCRtsjSSvuvr6N0BF07I5R26EpVb1HQUVNlR-GuGCX_sn_nusUjisVSZIS9jOoqcU5HO3lFmzCe5-tc5JItjQGjSSFXSPDbLZWpFfGp5MnpDBJsgUZZHKmUYyahprTxETf4dRkoHJGqxSsU5LMp9lqln98XsC4_zzuvdCqkgIVTmznFDWQjm3pSFcIx9cqsiLpmEQ9rmKBUVwhE4GlIz9A_0VbGmEVEY8lk44fMe1eQmORLdQVEBRc2meMo45THoLMcVZPaomONHqiUrWgu13bVFRZxk2xi3laeBtWnCIaqUEjrdBowcNuxLLMsPFH36ZZ_V2_auFb0N7Cl1a_4DpFbYevjdzrXf8-6gYOzdzlfkobGvlqo27hQHzls_Xqrvi6vgHI-cxo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7qA9SDb7E-9-BFcG2S5nmMYqnYloI9FDyEfdZCbaSJ_n5nkzQIiuBtD5tNsl8y3ze7szMAV9zmvkDPgQrZ5tSkOKeh6wrqCdfjAZfK9nhRbCIYDMLxOBo24KY-C6OUKoLP1K1pFnv5MhUfZqmshVTqI0GvwJqpnFWd1qrtrqGeMsLQomhjw-WmpBW1es9DdAUd-9bo7cAUq_5GQkVVlR-muOCXzs7_nmwXtisdSeIS-D1oqPk-bH3LLngALx2W5SSW7N2YNBIXlo0M0mmmyH0ZoU7ukMQkSeekn8qpRjlqGmpGYxN_h0OTvsoZrZKwTkg8m6SLaf76dgijzsPovkurWgpUOJGdU1RBOrKlI9tCOJ5WoRVKx6TqaSvmG80VMOFbOvR89GC0pRFYEfJIMul4IdPtI1idp3N1DAQll_YY46jklIswcxzVlVqiK42-qFRNaC3nNhFVnnFT7mKWFP6GFSWIRmLQSCo0mnBdX_Fe5tj4o--Bmf26XzXxTThbwpdUP2GWoLrD10b2dU9-v-oSNrqjfi_pPQ6eTmHT3KdcXTmD1Xzxoc5hXXzm02xxUXxpX5phz7E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Adaptive+Active+Noise+Control+Based+on+Modified+Model-Agnostic+Meta-Learning+Algorithm&rft.jtitle=IEEE+signal+processing+letters&rft.au=Shi%2C+Dongyuan&rft.au=Gan%2C+Woon-Seng&rft.au=Lam%2C+Bhan&rft.au=Ooi%2C+Kenneth&rft.date=2021&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=28&rft.spage=593&rft.epage=597&rft_id=info:doi/10.1109%2FLSP.2021.3064756&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2021_3064756 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |