Finite-Bit Quantization for Distributed Algorithms With Linear Convergence

This paper studies distributed algorithms for (strongly convex) composite optimization problems over mesh networks, subject to quantized communications. Instead of focusing on a specific algorithmic design, a black-box model is proposed, casting linearly convergent distributed algorithms in the form...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 68; no. 11; pp. 7254 - 7280
Main Authors: Michelusi, Nicolo, Scutari, Gesualdo, Lee, Chang-Shen
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper studies distributed algorithms for (strongly convex) composite optimization problems over mesh networks, subject to quantized communications. Instead of focusing on a specific algorithmic design, a black-box model is proposed, casting linearly convergent distributed algorithms in the form of fixed-point iterates. The algorithmic model is equipped with a novel random or deterministic Biased Compression (BC) rule on the quantizer design, and a new Adaptive encoding Non-uniform Quantizer (ANQ) coupled with a communication-efficient encoding scheme, which implements the BC-rule using a finite number of bits (below machine precision). This fills a gap existing in most state-of-the-art quantization schemes, such as those based on the popular compression rule, which rely on communication of some scalar signals with negligible quantization error (in practice quantized at the machine precision). A unified communication complexity analysis is developed for the black-box model, determining the average number of bits required to reach a solution of the optimization problem within a target accuracy. It is shown that the proposed BC-rule preserves linear convergence of the unquantized algorithms, and a trade-off between convergence rate and communication cost under ANQ-based quantization is characterized. Numerical results validate our theoretical findings and show that distributed algorithms equipped with the proposed ANQ have more favorable communication cost than algorithms using state-of-the-art quantization rules.
AbstractList This paper studies distributed algorithms for (strongly convex) composite optimization problems over mesh networks, subject to quantized communications. Instead of focusing on a specific algorithmic design, a black-box model is proposed, casting linearly convergent distributed algorithms in the form of fixed-point iterates. The algorithmic model is equipped with a novel random or deterministic Biased Compression (BC) rule on the quantizer design, and a new Adaptive encoding Non-uniform Quantizer (ANQ) coupled with a communication-efficient encoding scheme, which implements the BC-rule using a finite number of bits (below machine precision). This fills a gap existing in most state-of-the-art quantization schemes, such as those based on the popular compression rule, which rely on communication of some scalar signals with negligible quantization error (in practice quantized at the machine precision). A unified communication complexity analysis is developed for the black-box model, determining the average number of bits required to reach a solution of the optimization problem within a target accuracy. It is shown that the proposed BC-rule preserves linear convergence of the unquantized algorithms, and a trade-off between convergence rate and communication cost under ANQ-based quantization is characterized. Numerical results validate our theoretical findings and show that distributed algorithms equipped with the proposed ANQ have more favorable communication cost than algorithms using state-of-the-art quantization rules.
Author Scutari, Gesualdo
Lee, Chang-Shen
Michelusi, Nicolo
Author_xml – sequence: 1
  givenname: Nicolo
  orcidid: 0000-0002-5521-6496
  surname: Michelusi
  fullname: Michelusi, Nicolo
  email: nicolo.michelusi@asu.edu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 2
  givenname: Gesualdo
  orcidid: 0000-0002-6453-6870
  surname: Scutari
  fullname: Scutari, Gesualdo
  email: gscutari@purdue.edu
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 3
  givenname: Chang-Shen
  orcidid: 0000-0002-1982-7011
  surname: Lee
  fullname: Lee, Chang-Shen
  email: ben3003neb@gmail.com
  organization: Bloomberg, New York City, NY, USA
BookMark eNp9kEtLAzEURoMo2Fb3gpsB11PzmmRmWavVSkGEisuQSW9qSpvUTEbQX-_UFhcuXF0ufOc-Th8d--ABoQuCh4Tg6no-nQ8ppnTIiBS0YEeoR4pC5pUo-DHqYUzKvOK8PEX9pll1LS8I7aHHifMuQX7jUvbcap_cl04u-MyGmN26JkVXtwkW2Wi9DNGlt02TvXYlmzkPOmbj4D8gLsEbOEMnVq8bOD_UAXqZ3M3HD_ns6X46Hs1yQyuS8opSXmrNBEgGZa3FQhotSGmN7M63VleAoWY1IYwbUnJrCltTUVuOF1pWNRugq_3cbQzvLTRJrUIbfbdSUUkl5kIy2aXEPmViaJoIVhmXfl5LUbu1IljtvKnOm9p5UwdvHYj_gNvoNjp-_odc7hEHAL_xSpaU8JJ9A1Kues8
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TMC_2024_3502686
crossref_primary_10_1109_LCSYS_2024_3519013
crossref_primary_10_1109_TSIPN_2025_3557584
crossref_primary_10_1109_OJSP_2025_3557332
crossref_primary_10_1109_TSIPN_2025_3603740
crossref_primary_10_1007_s10957_024_02595_z
crossref_primary_10_1109_TSP_2024_3460690
crossref_primary_10_1109_TCSII_2024_3362793
crossref_primary_10_1109_TAC_2024_3471854
crossref_primary_10_1109_TSP_2025_3564416
crossref_primary_10_1109_TAC_2023_3266018
crossref_primary_10_1109_TAC_2022_3180695
crossref_primary_10_1109_TSIPN_2024_3464350
crossref_primary_10_1109_JIOT_2023_3280843
crossref_primary_10_1109_TIT_2023_3317168
crossref_primary_10_1109_TSP_2023_3287333
Cites_doi 10.1109/TAC.2009.2031203
10.1007/978-3-319-97142-1
10.1109/ACSSC.2018.8645345
10.1007/s10107-018-01357-w
10.1109/TSP.2012.2223692
10.1109/TCNS.2017.2698261
10.1109/TSIPN.2016.2524588
10.1016/j.automatica.2007.01.002
10.1109/TNNLS.2016.2519894
10.1109/TAC.2011.2160593
10.1109/TAC.2020.2989281
10.1080/10556788.2020.1750013
10.1016/j.arcontrol.2019.05.006
10.1109/TAC.2016.2530939
10.1109/TAC.2008.2009515
10.1109/TAC.2020.3030871
10.1109/5.726791
10.24033/bsmf.1625
10.1109/TSP.2010.2077282
10.1109/TAC.2017.2730481
10.1109/TAC.2010.2052384
10.1109/ACSSC.2017.8335401
10.1109/TSG.2017.2720471
10.1109/TSP.2019.2926022
10.1109/CDC.2018.8618973
10.1109/TSP.2015.2441034
10.1016/j.sysconle.2004.02.022
10.1109/TSP.2021.3086579
10.1137/16M1084316
10.1007/978-1-4419-8853-9
10.1137/14096668X
10.1109/TSP.2009.2036046
10.1137/19M1259973
10.1017/CBO9781139042918
10.1109/TSP.2020.3031073
10.1109/INFOCOM.2019.8737489
10.1109/TSP.2008.927071
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2022.3176253
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 7280
ExternalDocumentID 10_1109_TIT_2022_3176253
9782148
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CIF 1719205
  funderid: 10.13039/100000001
– fundername: Army Research Office
  grantid: W911NF1810238
  funderid: 10.13039/100000183
– fundername: National Science Foundation
  grantid: CNS-2129015
  funderid: 10.13039/100000001
– fundername: Office of Naval Research
  grantid: N00014-21-1-2673
  funderid: 10.13039/100000006
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-92248aa36e73e8ba6d7ca618fc7022ffa9e0eb3b1134c184fc5fb26bf40da79b3
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871032100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Mon Jun 30 07:08:58 EDT 2025
Sat Nov 29 03:31:49 EST 2025
Tue Nov 18 22:17:42 EST 2025
Wed Aug 27 02:18:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-92248aa36e73e8ba6d7ca618fc7022ffa9e0eb3b1134c184fc5fb26bf40da79b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6453-6870
0000-0002-5521-6496
0000-0002-1982-7011
PQID 2727046737
PQPubID 36024
PageCount 27
ParticipantIDs ieee_primary_9782148
proquest_journals_2727046737
crossref_citationtrail_10_1109_TIT_2022_3176253
crossref_primary_10_1109_TIT_2022_3176253
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
Alistarh (ref53)
ref58
Zhang (ref39) 2021
ref11
ref10
ref17
ref16
ref19
ref18
ref51
Koloskova (ref6)
ref50
ref46
ref45
ref48
ref47
Stich (ref29)
ref42
ref41
ref44
Lian (ref5)
ref43
ref49
Stich (ref35) 2020
ref8
ref7
ref9
Agarwal (ref55)
ref4
ref3
Gorbunov (ref34)
ref40
Taheri (ref36)
ref31
Kovalev (ref24)
Liao (ref38) 2021
ref2
Alistarh (ref27)
ref1
Beznosikov (ref33) 2020
ref23
Liu (ref25)
Bertsekas (ref52) 1989
ref20
ref22
Davies (ref54)
ref21
Tang (ref30)
Alistarh (ref26)
Haddadpour (ref37)
Karimireddy (ref28)
Zheng (ref32)
References_xml – ident: ref9
  doi: 10.1109/TAC.2009.2031203
– volume-title: arXiv:2009.02388
  year: 2020
  ident: ref35
  article-title: On communication compression for distributed optimization on heterogeneous data
– start-page: 7254
  volume-title: Proc. 35th NeurIPS
  ident: ref53
  article-title: Towards tight communication lower bounds for distributed optimisation
– ident: ref2
  doi: 10.1007/978-3-319-97142-1
– volume-title: Parallel and Distributed Computation: Numerical Methods
  year: 1989
  ident: ref52
– start-page: 1709
  volume-title: Proc. 31st NeurIPS
  ident: ref26
  article-title: QSGD: Communication-efficient SGD via gradient quantization and encoding
– ident: ref20
  doi: 10.1109/ACSSC.2018.8645345
– ident: ref49
  doi: 10.1007/s10107-018-01357-w
– ident: ref14
  doi: 10.1109/TSP.2012.2223692
– ident: ref46
  doi: 10.1109/TCNS.2017.2698261
– ident: ref40
  doi: 10.1109/TSIPN.2016.2524588
– ident: ref7
  doi: 10.1016/j.automatica.2007.01.002
– ident: ref17
  doi: 10.1109/TNNLS.2016.2519894
– ident: ref13
  doi: 10.1109/TAC.2011.2160593
– ident: ref21
  doi: 10.1109/TAC.2020.2989281
– ident: ref42
  doi: 10.1080/10556788.2020.1750013
– ident: ref3
  doi: 10.1016/j.arcontrol.2019.05.006
– ident: ref16
  doi: 10.1109/TAC.2016.2530939
– start-page: 3252
  volume-title: Proc. 36th ICML
  ident: ref28
  article-title: Error feedback fixes SignSGD and other gradient compression schemes
– ident: ref47
  doi: 10.1109/TAC.2008.2009515
– ident: ref23
  doi: 10.1109/TAC.2020.3030871
– ident: ref57
  doi: 10.1109/5.726791
– start-page: 7652
  volume-title: Proc. 32nd NeurIPS
  ident: ref30
  article-title: Communication compression for decentralized training
– ident: ref58
  doi: 10.24033/bsmf.1625
– ident: ref12
  doi: 10.1109/TSP.2010.2077282
– ident: ref44
  doi: 10.1109/TAC.2017.2730481
– start-page: 5973
  volume-title: Proc. 32nd NeurIPS
  ident: ref27
  article-title: The convergence of sparsified gradient methods
– ident: ref11
  doi: 10.1109/TAC.2010.2052384
– volume-title: arXiv:2105.06697
  year: 2021
  ident: ref39
  article-title: Innovation compression for communication-efficient distributed optimization with linear convergence
– ident: ref18
  doi: 10.1109/ACSSC.2017.8335401
– ident: ref1
  doi: 10.1109/TSG.2017.2720471
– start-page: 680
  volume-title: Proc. 23rd AISTATS
  ident: ref34
  article-title: A unified theory of SGD: Variance reduction, sampling, quantization and coordinate descent
– volume-title: Proc. 9th ICLR
  ident: ref25
  article-title: Linear convergent decentralized optimization with compression
– ident: ref48
  doi: 10.1109/TSP.2019.2926022
– ident: ref19
  doi: 10.1109/CDC.2018.8618973
– ident: ref15
  doi: 10.1109/TSP.2015.2441034
– ident: ref56
  doi: 10.1016/j.sysconle.2004.02.022
– start-page: 4087
  volume-title: Proc. 24th AISTATS
  ident: ref24
  article-title: A linearly convergent algorithm for decentralized optimization: Sending less bits for free!
– ident: ref50
  doi: 10.1109/TSP.2021.3086579
– start-page: 3478
  volume-title: Proc. 36th ICML
  ident: ref6
  article-title: Decentralized stochastic optimization and gossip algorithms with compressed communication
– ident: ref45
  doi: 10.1137/16M1084316
– volume-title: arXiv:2002.12410
  year: 2020
  ident: ref33
  article-title: On biased compression for distributed learning
– start-page: 2350
  volume-title: Proc. 24th AISTATS
  ident: ref37
  article-title: Federated learning with compression: Unified analysis and sharp guarantees
– ident: ref51
  doi: 10.1007/978-1-4419-8853-9
– ident: ref43
  doi: 10.1137/14096668X
– start-page: 37
  volume-title: Proc. 24th NeurIPS
  ident: ref55
  article-title: Fast global convergence rates of gradient methods for high-dimensional statistical recovery
– ident: ref10
  doi: 10.1109/TSP.2009.2036046
– volume-title: arXiv:2103.13748
  year: 2021
  ident: ref38
  article-title: Compressed gradient tracking methods for decentralized optimization with linear convergence
– ident: ref41
  doi: 10.1137/19M1259973
– ident: ref4
  doi: 10.1017/CBO9781139042918
– start-page: 4447
  volume-title: Proc. 32nd NeurIPS
  ident: ref29
  article-title: Sparsified SGD with memory
– start-page: 5330
  volume-title: Proc. 31st NeurIPS
  ident: ref5
  article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent
– ident: ref22
  doi: 10.1109/TSP.2020.3031073
– ident: ref31
  doi: 10.1109/INFOCOM.2019.8737489
– volume-title: Proc. 9th ICLR
  ident: ref54
  article-title: New bounds for distributed mean estimation and variance reduction
– ident: ref8
  doi: 10.1109/TSP.2008.927071
– volume-title: Proc. 33rd NeurIPS
  ident: ref32
  article-title: Communication-efficient distributed blockwise momentum SGD with error-feedback
– start-page: 9324
  volume-title: Proc. 37th ICML
  ident: ref36
  article-title: Quantized decentralized stochastic learning over directed graphs
SSID ssj0014512
Score 2.5528367
Snippet This paper studies distributed algorithms for (strongly convex) composite optimization problems over mesh networks, subject to quantized communications....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7254
SubjectTerms Algorithms
Communication
Convergence
Costs
Distributed algorithms
Finite element method
linear convergence
Mathematical models
Measurement
Mesh networks
Optimization
optimization methods
quantization
Quantization (signal)
Stars
Title Finite-Bit Quantization for Distributed Algorithms With Linear Convergence
URI https://ieeexplore.ieee.org/document/9782148
https://www.proquest.com/docview/2727046737
Volume 68
WOSCitedRecordID wos000871032100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGLYLVt0qQ5-lpURBRW9FbSdKIL667sdv39TtruoiiCp_aQlDJfpjNfk_kG4IBotEmTUPg2qSIQLi0Ck0sMJHcWXehitJVk_q26u0ufn_X9DBxNa2EQsTp8hsf-ttrLLwZ27H-VeTXYmNL3WZhVStW1WtMdA5FEtTJ4RA5MnGOyJRnqk851h4hgHBM_JddP-LcQVPVU-fEhrqJLe_l_77UCS00WyU5r2FdhBvtrsDzp0MAah12DxS9yg-tw0-76DDM465bsYUwmbWowGSWu7MIr6PrmV1iw097LYNgtX99G7IkujAgrOQQ79yfUq2JN3IDH9mXn_CpoeikENtZRGWgK1akxXKLimOZGFsoaGaXOKrKMc0ZjSLw6jyIuLLE-ZxOXxzJ3IiyM0jnfhLn-oI9bwKSOMI0Md4lBYbXItUsFt1KqkEId2hacTMyb2UZo3Pe76GUV4Qh1RoBkHpCsAaQFh9MZ77XIxh9j1z0A03GN7VuwO0Ewa7xwlMWUnBH_V1xt_z5rBxb8s-vawl2YK4dj3IN5-1F2R8P9aoF9Ak78zhI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xgLRw4I0oTx-4IG2WOHGc-MiraqFUIHW13CLHGUMlaFGb8vsZJ2kF2hUSp-RgK9GMJzNf7Pk-gGOC0TqJfOFkUoUnbJJ7OpPoydAatL4N0JSU-Z24200eHtTdHPya9cIgYnn4DH-723IvPx-aiftV5thgAyrff8BCJETAq26t2Z6BiHjFDc4phAl1TDclfXXaa_cICgYBIVQK_ij8lIRKVZV_PsVlfmmufu_N1mClriPZWeX4dZjDwQasTjUaWB2yG7D8gXBwE66bfVdjeuf9gt1PyKh1Fyaj0pVdOg5dJ3-FOTt7fhyO-sXTy5j9pQsjyEohwS7cGfWyXRO34E_zqnfR8mo1Bc8EiheeomSdaB1KjENMMi3z2GjJE2tisoy1WqFPyDrjPBSGcJ81kc0CmVnh5zpWWbgN84PhAHeAScUx4Tq0kUZhlMiUTURopIx9SnZoGnA6NW9qaqpxp3jxnJaQw1cpOSR1DklrhzTgZDbjtaLZ-GLspnPAbFxt-wbsTz2Y1nE4TgMqz3zhtHh2_z_rCH62eredtNPu3uzBkntO1Wm4D_PFaIIHsGjeiv54dFgutncwotFZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Bit+Quantization+for+Distributed+Algorithms+With+Linear+Convergence&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Michelusi%2C+Nicolo&rft.au=Scutari%2C+Gesualdo&rft.au=Lee%2C+Chang-Shen&rft.date=2022-11-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=68&rft.issue=11&rft.spage=7254&rft.epage=7280&rft_id=info:doi/10.1109%2FTIT.2022.3176253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2022_3176253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon