Introduction of an Assistance System to Support Domain Experts in Programming Low-Code to Leverage Industry 5.0

The rapid technological leaps of Industry 4.0 increase the pressure and demands on humans working in automation, which is one of the main motivators of Industry 5.0. In particular, automation software development for mechatronic systems becomes increasingly challenging, as both domain knowledge and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 7; no. 4; pp. 10422 - 10429
Main Authors: Neumann, Eva-Maria, Vogel-Heuser, Birgit, Haben, Fabian, Kruger, Marius, Wieringa, Timotheus
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid technological leaps of Industry 4.0 increase the pressure and demands on humans working in automation, which is one of the main motivators of Industry 5.0. In particular, automation software development for mechatronic systems becomes increasingly challenging, as both domain knowledge and programming skills are required for high-quality, maintainable software. Especially for small companies from automation and robotics without dedicated software engineering departments, domain-specific low-code platforms become indispensable that enable domain experts to develop code intuitively using visual programming languages, e.g., for tasks such as retrofitting mobile machines. However, for extensive functionalities, visual programs may become overwhelming due to the scaling-up problem. In addition, the ever-shortening time-to-market increases the time pressure on programmers. Thus, an assistance system concept is introduced that can be implemented by low-code platform suppliers based on combining data mining and static code analysis. Domain experts are supported in developing low-code by targeted recommendations, metric-based complexity measurement, and reducing complexity by encapsulating functionalities. The concept is implemented for the industrial low-code platform HAWE eDesign to program hydraulic components in mobile machines, and its benefits are confirmed in a user study and an industrial expert workshop.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2022.3193728