On the Optimal Recovery Threshold of Coded Matrix Multiplication
We provide novel coded computation strategies for distributed matrix-matrix products that outperform the recent "Polynomial code" constructions in recovery threshold, i.e., the required number of successful workers. When a fixed <inline-formula> <tex-math notation="LaTeX"...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 66; číslo 1; s. 278 - 301 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We provide novel coded computation strategies for distributed matrix-matrix products that outperform the recent "Polynomial code" constructions in recovery threshold, i.e., the required number of successful workers. When a fixed <inline-formula> <tex-math notation="LaTeX">1/m </tex-math></inline-formula> fraction of each matrix can be stored at each worker node, Polynomial codes require <inline-formula> <tex-math notation="LaTeX">m^{2} </tex-math></inline-formula> successful workers, while our MatDot codes only require <inline-formula> <tex-math notation="LaTeX">2m-1 </tex-math></inline-formula> successful workers. However, MatDot codes have higher computation cost per worker and higher communication cost from each worker to the fusion node. We also provide a systematic construction of MatDot codes. Furthermore, we propose "PolyDot" coding that interpolates between Polynomial codes and MatDot codes to trade off computation/communication costs and recovery thresholds. Finally, we demonstrate a novel coding technique for multiplying <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> matrices (<inline-formula> <tex-math notation="LaTeX">n \geq 3 </tex-math></inline-formula>) using ideas from MatDot and PolyDot codes. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2019.2929328 |