A Novel Two-Stage Unsupervised Fault Recognition Framework Combining Feature Extraction and Fuzzy Clustering for Collaborative AIoT

Currently, with the development of the Internet of Things (IoTs) and artificial intelligence, a new IoT structure known as the artificial Intelligence of Things (AIoTs) comes into play. With the development of AIoT, a large amount of unlabeled industrial big data has been accumulated. The analysis o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics Jg. 18; H. 2; S. 1291 - 1300
Hauptverfasser: Hu, Xufeng, Li, Yibin, Jia, Lei, Qiu, Meikang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1551-3203, 1941-0050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Currently, with the development of the Internet of Things (IoTs) and artificial intelligence, a new IoT structure known as the artificial Intelligence of Things (AIoTs) comes into play. With the development of AIoT, a large amount of unlabeled industrial big data has been accumulated. The analysis of large amounts of unlabeled data is labor-intensive and time-consuming for diagnostic personnel. To improve this situation, a novel two-stage unsupervised fault recognition algorithm, namely, deep adaptive fuzzy clustering algorithm (DAFC) is proposed for unsupervised fault clustering in this article. DAFC amalgamates stacked sparse autoencoder (SSAE) into adaptive weighted Gath-Geva (AWGG) clustering to form an unsupervised fault recognition framework for clustering analysis of unlabeled industrial big data. SSAE can extract the highly abstract features of the original data, and adopt different unsupervised strategies to fine-tune the network in two stages. AWGG is an improvement of Gath-Geva clustering, and can adaptively obtain optimal clustering results without presetting the number of clusters. Experimental results on two different datasets show that the proposed DAFC can stably extract fault features from unlabeled data, and automatically obtain the optimal clustering results without knowing the number of clusters in advance. To the best of our knowledge, this article is the first attempt to fine-tune SSAE in an unsupervised manner, and to propose an unsupervised fault recognition framework that requires no prior knowledge or data labels at all. DAFC can be a feasible industrial big data application for collaborative AIoT. Diagnostic personnel analyze the clustering results obtained by DAFC instead of the original unlabeled data, greatly saving time and labor costs.
AbstractList Currently, with the development of the Internet of Things (IoTs) and artificial intelligence, a new IoT structure known as the artificial Intelligence of Things (AIoTs) comes into play. With the development of AIoT, a large amount of unlabeled industrial big data has been accumulated. The analysis of large amounts of unlabeled data is labor-intensive and time-consuming for diagnostic personnel. To improve this situation, a novel two-stage unsupervised fault recognition algorithm, namely, deep adaptive fuzzy clustering algorithm (DAFC) is proposed for unsupervised fault clustering in this article. DAFC amalgamates stacked sparse autoencoder (SSAE) into adaptive weighted Gath–Geva (AWGG) clustering to form an unsupervised fault recognition framework for clustering analysis of unlabeled industrial big data. SSAE can extract the highly abstract features of the original data, and adopt different unsupervised strategies to fine-tune the network in two stages. AWGG is an improvement of Gath–Geva clustering, and can adaptively obtain optimal clustering results without presetting the number of clusters. Experimental results on two different datasets show that the proposed DAFC can stably extract fault features from unlabeled data, and automatically obtain the optimal clustering results without knowing the number of clusters in advance. To the best of our knowledge, this article is the first attempt to fine-tune SSAE in an unsupervised manner, and to propose an unsupervised fault recognition framework that requires no prior knowledge or data labels at all. DAFC can be a feasible industrial big data application for collaborative AIoT. Diagnostic personnel analyze the clustering results obtained by DAFC instead of the original unlabeled data, greatly saving time and labor costs.
Author Qiu, Meikang
Hu, Xufeng
Jia, Lei
Li, Yibin
Author_xml – sequence: 1
  givenname: Xufeng
  orcidid: 0000-0002-2384-6004
  surname: Hu
  fullname: Hu, Xufeng
  email: huxufeng89@163.com
  organization: Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
– sequence: 2
  givenname: Yibin
  orcidid: 0000-0001-9484-149X
  surname: Li
  fullname: Li, Yibin
  email: liyibing@sdu.edu.cn
  organization: Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-4405-7274
  surname: Jia
  fullname: Jia, Lei
  email: jialei@sdu.edu.cn
  organization: School of Control Sciences and Engineering, Shandong University, Jinan, Shandong, China
– sequence: 4
  givenname: Meikang
  orcidid: 0000-0002-1004-0140
  surname: Qiu
  fullname: Qiu, Meikang
  email: qiumeikang@yahoo.com
  organization: Department of Computer Science, Texas A&M University-Commerce, TX, USA
BookMark eNp9kT1v2zAQhokiBZqvPUAWApnlHkmLlEbDiFMDQQo0zixQ1MlgIpMuSTkfa_946TrI0CHTcXgeHt73TsiR8w4JuWAwYQzq76vlcsKBs4kAJUGpL-SY1VNWAJRwlN9lyQrBQXwjJzE-AggFoj4mf2b0zu9woKtnX9wnvUb64OK4xbCzETu60OOQ6C80fu1sst7RRdAbfPbhic79prXOujVdoE5jQHr9koI2_zDtsjy-vb3S-TDGhGHP9T5kaxh064NOdod0tvSrM_K110PE8_d5Sh4W16v5j-L2581yPrstDK9ZKqpWG85Nx1QFfZkTtCA7xUuJRjDNOyl7VF01FUYznFatRKFUy6u-FyUajuKUXB3-3Qb_e8SYmkc_BpdXNrysKlBc1CpT8kCZ4GMM2DfGJr3PlLPZoWHQ7AtvcuHNvvDmvfAswn_iNtiNDq-fKZcHxSLiB57PJitZi785SI8z
CODEN ITIICH
CitedBy_id crossref_primary_10_1145_3555777
crossref_primary_10_1016_j_conengprac_2025_106263
crossref_primary_10_1002_dac_5633
crossref_primary_10_1007_s12190_025_02520_1
crossref_primary_10_1016_j_measurement_2023_113478
crossref_primary_10_1109_TII_2023_3301045
crossref_primary_10_1016_j_asoc_2024_111594
crossref_primary_10_1016_j_engappai_2024_109584
crossref_primary_10_1002_sys_21755
crossref_primary_10_1109_TNSM_2022_3199886
crossref_primary_10_1016_j_asoc_2023_110358
crossref_primary_10_1109_ACCESS_2025_3551750
crossref_primary_10_1109_TII_2023_3316220
crossref_primary_10_1016_j_oceaneng_2024_117619
crossref_primary_10_1016_j_knosys_2022_108501
crossref_primary_10_1016_j_inffus_2024_102820
crossref_primary_10_4018_JOEUC_367726
crossref_primary_10_3390_s23020783
crossref_primary_10_1007_s10044_023_01149_9
crossref_primary_10_1016_j_dsp_2024_104552
crossref_primary_10_1109_TMC_2023_3330679
crossref_primary_10_1016_j_measurement_2023_112835
crossref_primary_10_1016_j_aei_2024_102644
crossref_primary_10_3390_s22082931
crossref_primary_10_1109_TCE_2025_3527809
crossref_primary_10_1109_TII_2025_3568512
crossref_primary_10_1109_TIM_2023_3273682
crossref_primary_10_1016_j_iot_2023_100901
crossref_primary_10_1007_s12351_025_00923_3
crossref_primary_10_1109_TIM_2024_3375416
Cites_doi 10.1016/j.knosys.2017.10.024
10.1016/j.ymssp.2007.07.013
10.1109/TSUSC.2017.2723954
10.1109/TII.2019.2929743
10.1109/TIM.2019.2906334
10.1177/1077546319895110
10.1109/TIM.2020.3042231
10.1109/TIE.2015.2417501
10.1109/TIM.2019.2903699
10.1016/j.patcog.2003.06.005
10.1016/S0020-0255(70)80056-1
10.1016/j.fss.2007.03.004
10.1109/TII.2018.2873175
10.1016/j.neucom.2018.07.004
10.1016/j.isatra.2018.11.044
10.1109/TIE.2017.2767551
10.1016/j.apacoust.2017.01.023
10.1109/TSMC.2017.2754287
10.1016/j.engappai.2018.09.010
10.1109/TMECH.2017.2759301
10.1109/JSEN.2019.2925845
10.1109/MCOM.2017.1600349CM
10.1016/j.neucom.2015.11.044
10.1109/TII.2020.2966326
10.1109/TBDATA.2016.2597149
10.1109/TIE.2018.2868259
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2021.3076077
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 1300
ExternalDocumentID 10_1109_TII_2021_3076077
9416869
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61973195
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2019YFB1504700
  funderid: 10.13039/501100013290
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-8bac22cd1780f5003b06d7256ec31a2d66fe7d843ca1e48b6e377b28ff35ec2e3
IEDL.DBID RIE
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712564700059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:17:52 EDT 2025
Sat Nov 29 04:16:57 EST 2025
Tue Nov 18 22:25:23 EST 2025
Wed Aug 27 02:28:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-8bac22cd1780f5003b06d7256ec31a2d66fe7d843ca1e48b6e377b28ff35ec2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1004-0140
0000-0002-2384-6004
0000-0001-9484-149X
0000-0002-4405-7274
PQID 2588072397
PQPubID 85507
PageCount 10
ParticipantIDs proquest_journals_2588072397
crossref_citationtrail_10_1109_TII_2021_3076077
crossref_primary_10_1109_TII_2021_3076077
ieee_primary_9416869
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
lessmeier (ref28) 2016
ref2
ref1
ref17
ref16
ref19
ref18
rumelhart (ref10) 1987
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – start-page: 318
  year: 1987
  ident: ref10
  article-title: Learning internal representations by error propagation
  publication-title: Proc Parallel Distrib Process Explorations Microstruct Cogn Found
– ident: ref16
  doi: 10.1016/j.knosys.2017.10.024
– ident: ref27
  doi: 10.1016/j.ymssp.2007.07.013
– ident: ref3
  doi: 10.1109/TSUSC.2017.2723954
– ident: ref21
  doi: 10.1109/TII.2019.2929743
– start-page: 5
  year: 2016
  ident: ref28
  article-title: Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification
  publication-title: Proc Eur Conf Prognostics Health Manage Soc
– ident: ref19
  doi: 10.1109/TIM.2019.2906334
– ident: ref23
  doi: 10.1177/1077546319895110
– ident: ref7
  doi: 10.1109/TIM.2020.3042231
– ident: ref8
  doi: 10.1109/TIE.2015.2417501
– ident: ref18
  doi: 10.1109/TIM.2019.2903699
– ident: ref26
  doi: 10.1016/j.patcog.2003.06.005
– ident: ref20
  doi: 10.1016/S0020-0255(70)80056-1
– ident: ref25
  doi: 10.1016/j.fss.2007.03.004
– ident: ref6
  doi: 10.1109/TII.2018.2873175
– ident: ref9
  doi: 10.1016/j.neucom.2018.07.004
– ident: ref14
  doi: 10.1016/j.isatra.2018.11.044
– ident: ref5
  doi: 10.1109/TIE.2017.2767551
– ident: ref22
  doi: 10.1016/j.apacoust.2017.01.023
– ident: ref11
  doi: 10.1109/TSMC.2017.2754287
– ident: ref13
  doi: 10.1016/j.engappai.2018.09.010
– ident: ref12
  doi: 10.1109/TMECH.2017.2759301
– ident: ref24
  doi: 10.1109/JSEN.2019.2925845
– ident: ref1
  doi: 10.1109/MCOM.2017.1600349CM
– ident: ref17
  doi: 10.1016/j.neucom.2015.11.044
– ident: ref15
  doi: 10.1109/TII.2020.2966326
– ident: ref2
  doi: 10.1109/TBDATA.2016.2597149
– ident: ref4
  doi: 10.1109/TIE.2018.2868259
SSID ssj0037039
Score 2.482363
Snippet Currently, with the development of the Internet of Things (IoTs) and artificial intelligence, a new IoT structure known as the artificial Intelligence of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1291
SubjectTerms Adaptive algorithms
Adaptive weighted Gath–Geva clustering (AWGG)
Artificial intelligence
artificial Intelligence of Things (AIoTs)
Big Data
Cluster analysis
Clustering
Clustering algorithms
Collaboration
Data mining
Fault diagnosis
fault recognition
Feature extraction
Feature recognition
Indexes
industrial big data
Internet of Things
Labor
Personnel
stacked sparse autoencoder (SSAE)
Unsupervised learning
Title A Novel Two-Stage Unsupervised Fault Recognition Framework Combining Feature Extraction and Fuzzy Clustering for Collaborative AIoT
URI https://ieeexplore.ieee.org/document/9416869
https://www.proquest.com/docview/2588072397
Volume 18
WOSCitedRecordID wos000712564700059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH60ZYftsHbrxrK2Q4ddBlVjSbElHUNoWGCEMVLozVjS8xgEuyR2tvbaf3ySYmctHYPdfHgPjL-np-_5_QL4mARSXLCSOp2VdISZpj5s5tS4shCeYWhj4xDXL3I-V9fX-usenO96YRAxFp_hRXiMuXxX2zb8Khtqzx5UpvdhX8ps26vVe13hLVfH2agpo4Inok9JJnq4mM18IMjZhQhpKCkfXUFxp8oTRxxvl-nh_73XEbzsWCQZb2F_BXtYvYYXD2YLHsP9mMzrDS7J4mdNPaX8juSqWrc3wTes0ZFp0S4b8q2vH6orMu3rtIh3EiYujiCBIbYrJJe_mtW2BYIUlVdu7-5uyWTZhjELQc5TXzL5Y1IbJONZvXgDV9PLxeQz7TYuUMs1a6gyheXcOiZVUqb-q5okc9KzIrSCFdxlWYnSqZGwBcORMhkKKQ1XZSlStBzFWzio6grfAWHKJUYr5MykniQkhSuFVjo1Vmk1cmIAwx6E3HbjyMNWjGUew5JE5x62PMCWd7AN4NNO42Y7iuMfsscBpp1ch9AATnuc8-6srnOeeh8muSdm7_-udQLPeWh6iLXap3DQrFo8g2d20_xYrz5EM_wNhf_brg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9QwFA_rKqgHv1ZxdNUcvAhmJx9tkxyHYYcdHAeRLuytNMmrCEO7zLSz6179x00y7agogrce3oPS38vL7_V9IfSWBlJcsoo4nVUkgUwTHzZzYlxVCs8wtLFxiOtCLpfq4kJ_OkDv970wABCLz-AkPMZcvmtsF36VjbVnDyrTt9DtNEk43XVrDX5XeNvVcTpqyojgVAxJSarH-XzuQ0HOTkRIREn52yUUt6r84Yrj_TJ7-H9v9gg96HkknuyAf4wOoH6C7v8yXfAIfZ_gZbOFFc6vGuJJ5RfA5_WmuwzeYQMOz8pu1eLPQwVRU-PZUKmFvZswcXUEDhyxWwM-vW7XuyYIXNZeubu5-Yanqy4MWghynvzi6U-j2gKezJv8KTqfnebTM9LvXCCWa9YSZUrLuXVMKlql_qsamjnpeRFYwUrusqwC6VQibMkgUSYDIaXhqqpECpaDeIYO66aG5wgz5ajRCjgzqacJtHSV0EqnxiqtEidGaDyAUNh-IHnYi7EqYmBCdeFhKwJsRQ_bCL3ba1zuhnH8Q_YowLSX6xEaoeMB56I_rZuCp96LSe6p2Yu_a71Bd8_yj4tiMV9-eInu8dACESu3j9Fhu-7gFbpjt-3Xzfp1NMkfGBLe9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Two-Stage+Unsupervised+Fault+Recognition+Framework+Combining+Feature+Extraction+and+Fuzzy+Clustering+for+Collaborative+AIoT&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Hu%2C+Xufeng&rft.au=Li%2C+Yibin&rft.au=Jia%2C+Lei&rft.au=Qiu%2C+Meikang&rft.date=2022-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=18&rft.issue=2&rft.spage=1291&rft_id=info:doi/10.1109%2FTII.2021.3076077&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon