A Novel Two-Stage Unsupervised Fault Recognition Framework Combining Feature Extraction and Fuzzy Clustering for Collaborative AIoT
Currently, with the development of the Internet of Things (IoTs) and artificial intelligence, a new IoT structure known as the artificial Intelligence of Things (AIoTs) comes into play. With the development of AIoT, a large amount of unlabeled industrial big data has been accumulated. The analysis o...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on industrial informatics Jg. 18; H. 2; S. 1291 - 1300 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1551-3203, 1941-0050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Currently, with the development of the Internet of Things (IoTs) and artificial intelligence, a new IoT structure known as the artificial Intelligence of Things (AIoTs) comes into play. With the development of AIoT, a large amount of unlabeled industrial big data has been accumulated. The analysis of large amounts of unlabeled data is labor-intensive and time-consuming for diagnostic personnel. To improve this situation, a novel two-stage unsupervised fault recognition algorithm, namely, deep adaptive fuzzy clustering algorithm (DAFC) is proposed for unsupervised fault clustering in this article. DAFC amalgamates stacked sparse autoencoder (SSAE) into adaptive weighted Gath-Geva (AWGG) clustering to form an unsupervised fault recognition framework for clustering analysis of unlabeled industrial big data. SSAE can extract the highly abstract features of the original data, and adopt different unsupervised strategies to fine-tune the network in two stages. AWGG is an improvement of Gath-Geva clustering, and can adaptively obtain optimal clustering results without presetting the number of clusters. Experimental results on two different datasets show that the proposed DAFC can stably extract fault features from unlabeled data, and automatically obtain the optimal clustering results without knowing the number of clusters in advance. To the best of our knowledge, this article is the first attempt to fine-tune SSAE in an unsupervised manner, and to propose an unsupervised fault recognition framework that requires no prior knowledge or data labels at all. DAFC can be a feasible industrial big data application for collaborative AIoT. Diagnostic personnel analyze the clustering results obtained by DAFC instead of the original unlabeled data, greatly saving time and labor costs. |
|---|---|
| AbstractList | Currently, with the development of the Internet of Things (IoTs) and artificial intelligence, a new IoT structure known as the artificial Intelligence of Things (AIoTs) comes into play. With the development of AIoT, a large amount of unlabeled industrial big data has been accumulated. The analysis of large amounts of unlabeled data is labor-intensive and time-consuming for diagnostic personnel. To improve this situation, a novel two-stage unsupervised fault recognition algorithm, namely, deep adaptive fuzzy clustering algorithm (DAFC) is proposed for unsupervised fault clustering in this article. DAFC amalgamates stacked sparse autoencoder (SSAE) into adaptive weighted Gath–Geva (AWGG) clustering to form an unsupervised fault recognition framework for clustering analysis of unlabeled industrial big data. SSAE can extract the highly abstract features of the original data, and adopt different unsupervised strategies to fine-tune the network in two stages. AWGG is an improvement of Gath–Geva clustering, and can adaptively obtain optimal clustering results without presetting the number of clusters. Experimental results on two different datasets show that the proposed DAFC can stably extract fault features from unlabeled data, and automatically obtain the optimal clustering results without knowing the number of clusters in advance. To the best of our knowledge, this article is the first attempt to fine-tune SSAE in an unsupervised manner, and to propose an unsupervised fault recognition framework that requires no prior knowledge or data labels at all. DAFC can be a feasible industrial big data application for collaborative AIoT. Diagnostic personnel analyze the clustering results obtained by DAFC instead of the original unlabeled data, greatly saving time and labor costs. |
| Author | Qiu, Meikang Hu, Xufeng Jia, Lei Li, Yibin |
| Author_xml | – sequence: 1 givenname: Xufeng orcidid: 0000-0002-2384-6004 surname: Hu fullname: Hu, Xufeng email: huxufeng89@163.com organization: Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China – sequence: 2 givenname: Yibin orcidid: 0000-0001-9484-149X surname: Li fullname: Li, Yibin email: liyibing@sdu.edu.cn organization: Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China – sequence: 3 givenname: Lei orcidid: 0000-0002-4405-7274 surname: Jia fullname: Jia, Lei email: jialei@sdu.edu.cn organization: School of Control Sciences and Engineering, Shandong University, Jinan, Shandong, China – sequence: 4 givenname: Meikang orcidid: 0000-0002-1004-0140 surname: Qiu fullname: Qiu, Meikang email: qiumeikang@yahoo.com organization: Department of Computer Science, Texas A&M University-Commerce, TX, USA |
| BookMark | eNp9kT1v2zAQhokiBZqvPUAWApnlHkmLlEbDiFMDQQo0zixQ1MlgIpMuSTkfa_946TrI0CHTcXgeHt73TsiR8w4JuWAwYQzq76vlcsKBs4kAJUGpL-SY1VNWAJRwlN9lyQrBQXwjJzE-AggFoj4mf2b0zu9woKtnX9wnvUb64OK4xbCzETu60OOQ6C80fu1sst7RRdAbfPbhic79prXOujVdoE5jQHr9koI2_zDtsjy-vb3S-TDGhGHP9T5kaxh064NOdod0tvSrM_K110PE8_d5Sh4W16v5j-L2581yPrstDK9ZKqpWG85Nx1QFfZkTtCA7xUuJRjDNOyl7VF01FUYznFatRKFUy6u-FyUajuKUXB3-3Qb_e8SYmkc_BpdXNrysKlBc1CpT8kCZ4GMM2DfGJr3PlLPZoWHQ7AtvcuHNvvDmvfAswn_iNtiNDq-fKZcHxSLiB57PJitZi785SI8z |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1145_3555777 crossref_primary_10_1016_j_conengprac_2025_106263 crossref_primary_10_1002_dac_5633 crossref_primary_10_1007_s12190_025_02520_1 crossref_primary_10_1016_j_measurement_2023_113478 crossref_primary_10_1109_TII_2023_3301045 crossref_primary_10_1016_j_asoc_2024_111594 crossref_primary_10_1016_j_engappai_2024_109584 crossref_primary_10_1002_sys_21755 crossref_primary_10_1109_TNSM_2022_3199886 crossref_primary_10_1016_j_asoc_2023_110358 crossref_primary_10_1109_ACCESS_2025_3551750 crossref_primary_10_1109_TII_2023_3316220 crossref_primary_10_1016_j_oceaneng_2024_117619 crossref_primary_10_1016_j_knosys_2022_108501 crossref_primary_10_1016_j_inffus_2024_102820 crossref_primary_10_4018_JOEUC_367726 crossref_primary_10_3390_s23020783 crossref_primary_10_1007_s10044_023_01149_9 crossref_primary_10_1016_j_dsp_2024_104552 crossref_primary_10_1109_TMC_2023_3330679 crossref_primary_10_1016_j_measurement_2023_112835 crossref_primary_10_1016_j_aei_2024_102644 crossref_primary_10_3390_s22082931 crossref_primary_10_1109_TCE_2025_3527809 crossref_primary_10_1109_TII_2025_3568512 crossref_primary_10_1109_TIM_2023_3273682 crossref_primary_10_1016_j_iot_2023_100901 crossref_primary_10_1007_s12351_025_00923_3 crossref_primary_10_1109_TIM_2024_3375416 |
| Cites_doi | 10.1016/j.knosys.2017.10.024 10.1016/j.ymssp.2007.07.013 10.1109/TSUSC.2017.2723954 10.1109/TII.2019.2929743 10.1109/TIM.2019.2906334 10.1177/1077546319895110 10.1109/TIM.2020.3042231 10.1109/TIE.2015.2417501 10.1109/TIM.2019.2903699 10.1016/j.patcog.2003.06.005 10.1016/S0020-0255(70)80056-1 10.1016/j.fss.2007.03.004 10.1109/TII.2018.2873175 10.1016/j.neucom.2018.07.004 10.1016/j.isatra.2018.11.044 10.1109/TIE.2017.2767551 10.1016/j.apacoust.2017.01.023 10.1109/TSMC.2017.2754287 10.1016/j.engappai.2018.09.010 10.1109/TMECH.2017.2759301 10.1109/JSEN.2019.2925845 10.1109/MCOM.2017.1600349CM 10.1016/j.neucom.2015.11.044 10.1109/TII.2020.2966326 10.1109/TBDATA.2016.2597149 10.1109/TIE.2018.2868259 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2021.3076077 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 1300 |
| ExternalDocumentID | 10_1109_TII_2021_3076077 9416869 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973195 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2019YFB1504700 funderid: 10.13039/501100013290 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-8bac22cd1780f5003b06d7256ec31a2d66fe7d843ca1e48b6e377b28ff35ec2e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712564700059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:17:52 EDT 2025 Sat Nov 29 04:16:57 EST 2025 Tue Nov 18 22:25:23 EST 2025 Wed Aug 27 02:28:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-8bac22cd1780f5003b06d7256ec31a2d66fe7d843ca1e48b6e377b28ff35ec2e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1004-0140 0000-0002-2384-6004 0000-0001-9484-149X 0000-0002-4405-7274 |
| PQID | 2588072397 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2588072397 crossref_citationtrail_10_1109_TII_2021_3076077 crossref_primary_10_1109_TII_2021_3076077 ieee_primary_9416869 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 lessmeier (ref28) 2016 ref2 ref1 ref17 ref16 ref19 ref18 rumelhart (ref10) 1987 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – start-page: 318 year: 1987 ident: ref10 article-title: Learning internal representations by error propagation publication-title: Proc Parallel Distrib Process Explorations Microstruct Cogn Found – ident: ref16 doi: 10.1016/j.knosys.2017.10.024 – ident: ref27 doi: 10.1016/j.ymssp.2007.07.013 – ident: ref3 doi: 10.1109/TSUSC.2017.2723954 – ident: ref21 doi: 10.1109/TII.2019.2929743 – start-page: 5 year: 2016 ident: ref28 article-title: Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification publication-title: Proc Eur Conf Prognostics Health Manage Soc – ident: ref19 doi: 10.1109/TIM.2019.2906334 – ident: ref23 doi: 10.1177/1077546319895110 – ident: ref7 doi: 10.1109/TIM.2020.3042231 – ident: ref8 doi: 10.1109/TIE.2015.2417501 – ident: ref18 doi: 10.1109/TIM.2019.2903699 – ident: ref26 doi: 10.1016/j.patcog.2003.06.005 – ident: ref20 doi: 10.1016/S0020-0255(70)80056-1 – ident: ref25 doi: 10.1016/j.fss.2007.03.004 – ident: ref6 doi: 10.1109/TII.2018.2873175 – ident: ref9 doi: 10.1016/j.neucom.2018.07.004 – ident: ref14 doi: 10.1016/j.isatra.2018.11.044 – ident: ref5 doi: 10.1109/TIE.2017.2767551 – ident: ref22 doi: 10.1016/j.apacoust.2017.01.023 – ident: ref11 doi: 10.1109/TSMC.2017.2754287 – ident: ref13 doi: 10.1016/j.engappai.2018.09.010 – ident: ref12 doi: 10.1109/TMECH.2017.2759301 – ident: ref24 doi: 10.1109/JSEN.2019.2925845 – ident: ref1 doi: 10.1109/MCOM.2017.1600349CM – ident: ref17 doi: 10.1016/j.neucom.2015.11.044 – ident: ref15 doi: 10.1109/TII.2020.2966326 – ident: ref2 doi: 10.1109/TBDATA.2016.2597149 – ident: ref4 doi: 10.1109/TIE.2018.2868259 |
| SSID | ssj0037039 |
| Score | 2.482363 |
| Snippet | Currently, with the development of the Internet of Things (IoTs) and artificial intelligence, a new IoT structure known as the artificial Intelligence of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1291 |
| SubjectTerms | Adaptive algorithms Adaptive weighted Gath–Geva clustering (AWGG) Artificial intelligence artificial Intelligence of Things (AIoTs) Big Data Cluster analysis Clustering Clustering algorithms Collaboration Data mining Fault diagnosis fault recognition Feature extraction Feature recognition Indexes industrial big data Internet of Things Labor Personnel stacked sparse autoencoder (SSAE) Unsupervised learning |
| Title | A Novel Two-Stage Unsupervised Fault Recognition Framework Combining Feature Extraction and Fuzzy Clustering for Collaborative AIoT |
| URI | https://ieeexplore.ieee.org/document/9416869 https://www.proquest.com/docview/2588072397 |
| Volume | 18 |
| WOSCitedRecordID | wos000712564700059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH60ZYftsHbrxrK2Q4ddBlVjSbElHUNoWGCEMVLozVjS8xgEuyR2tvbaf3ySYmctHYPdfHgPjL-np-_5_QL4mARSXLCSOp2VdISZpj5s5tS4shCeYWhj4xDXL3I-V9fX-usenO96YRAxFp_hRXiMuXxX2zb8Khtqzx5UpvdhX8ps26vVe13hLVfH2agpo4Inok9JJnq4mM18IMjZhQhpKCkfXUFxp8oTRxxvl-nh_73XEbzsWCQZb2F_BXtYvYYXD2YLHsP9mMzrDS7J4mdNPaX8juSqWrc3wTes0ZFp0S4b8q2vH6orMu3rtIh3EiYujiCBIbYrJJe_mtW2BYIUlVdu7-5uyWTZhjELQc5TXzL5Y1IbJONZvXgDV9PLxeQz7TYuUMs1a6gyheXcOiZVUqb-q5okc9KzIrSCFdxlWYnSqZGwBcORMhkKKQ1XZSlStBzFWzio6grfAWHKJUYr5MykniQkhSuFVjo1Vmk1cmIAwx6E3HbjyMNWjGUew5JE5x62PMCWd7AN4NNO42Y7iuMfsscBpp1ch9AATnuc8-6srnOeeh8muSdm7_-udQLPeWh6iLXap3DQrFo8g2d20_xYrz5EM_wNhf_brg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9QwFA_rKqgHv1ZxdNUcvAhmJx9tkxyHYYcdHAeRLuytNMmrCEO7zLSz6179x00y7agogrce3oPS38vL7_V9IfSWBlJcsoo4nVUkgUwTHzZzYlxVCs8wtLFxiOtCLpfq4kJ_OkDv970wABCLz-AkPMZcvmtsF36VjbVnDyrTt9DtNEk43XVrDX5XeNvVcTpqyojgVAxJSarH-XzuQ0HOTkRIREn52yUUt6r84Yrj_TJ7-H9v9gg96HkknuyAf4wOoH6C7v8yXfAIfZ_gZbOFFc6vGuJJ5RfA5_WmuwzeYQMOz8pu1eLPQwVRU-PZUKmFvZswcXUEDhyxWwM-vW7XuyYIXNZeubu5-Yanqy4MWghynvzi6U-j2gKezJv8KTqfnebTM9LvXCCWa9YSZUrLuXVMKlql_qsamjnpeRFYwUrusqwC6VQibMkgUSYDIaXhqqpECpaDeIYO66aG5wgz5ajRCjgzqacJtHSV0EqnxiqtEidGaDyAUNh-IHnYi7EqYmBCdeFhKwJsRQ_bCL3ba1zuhnH8Q_YowLSX6xEaoeMB56I_rZuCp96LSe6p2Yu_a71Bd8_yj4tiMV9-eInu8dACESu3j9Fhu-7gFbpjt-3Xzfp1NMkfGBLe9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Two-Stage+Unsupervised+Fault+Recognition+Framework+Combining+Feature+Extraction+and+Fuzzy+Clustering+for+Collaborative+AIoT&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Hu%2C+Xufeng&rft.au=Li%2C+Yibin&rft.au=Jia%2C+Lei&rft.au=Qiu%2C+Meikang&rft.date=2022-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=18&rft.issue=2&rft.spage=1291&rft_id=info:doi/10.1109%2FTII.2021.3076077&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |