A Stochastic Global Optimization Algorithm for the Two-Frame Sensor Calibration Problem
In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices X,Y that best fit a set of equalities of the form A i X = YB i , i=1,..., N, where the {(A i , B i )} are pairs of homogeneous transformations obtained from sensor measurements. The m...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial electronics (1982) Ročník 63; číslo 4; s. 2434 - 2446 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0278-0046, 1557-9948 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices X,Y that best fit a set of equalities of the form A i X = YB i , i=1,..., N, where the {(A i , B i )} are pairs of homogeneous transformations obtained from sensor measurements. The measurements are often subject to varying levels of noise and the resulting optimization can have numerous local minima that exhibit high sensitivity in the choice of optimization parameters. As a first contribution, we present a fast and numerically robust local optimization algorithm for the two-frame sensor calibration objective function. Using coordinate-invariant differential geometric methods that take into account the matrix Lie group structure of the rigid-body transformations, our local descent method makes use of analytic gradients and Hessians, and a strictly descending fast step-size estimate to achieve significant performance improvements. As a second contribution, we present a two-phase stochastic geometric optimization algorithm for finding a stochastic global minimizer based on our earlier local optimizer. Numerical studies demonstrate the considerably enhanced robustness and efficiency of our algorithm over existing unit quaternion-based methods. |
|---|---|
| AbstractList | In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices X,Y that best fit a set of equalities of the form A i X = YB i , i=1,..., N, where the {(A i , B i )} are pairs of homogeneous transformations obtained from sensor measurements. The measurements are often subject to varying levels of noise and the resulting optimization can have numerous local minima that exhibit high sensitivity in the choice of optimization parameters. As a first contribution, we present a fast and numerically robust local optimization algorithm for the two-frame sensor calibration objective function. Using coordinate-invariant differential geometric methods that take into account the matrix Lie group structure of the rigid-body transformations, our local descent method makes use of analytic gradients and Hessians, and a strictly descending fast step-size estimate to achieve significant performance improvements. As a second contribution, we present a two-phase stochastic geometric optimization algorithm for finding a stochastic global minimizer based on our earlier local optimizer. Numerical studies demonstrate the considerably enhanced robustness and efficiency of our algorithm over existing unit quaternion-based methods. In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices [Formula Omitted] that best fit a set of equalities of the form [Formula Omitted], [Formula Omitted], where the [Formula Omitted] are pairs of homogeneous transformations obtained from sensor measurements. The measurements are often subject to varying levels of noise and the resulting optimization can have numerous local minima that exhibit high sensitivity in the choice of optimization parameters. As a first contribution, we present a fast and numerically robust local optimization algorithm for the two-frame sensor calibration objective function. Using coordinate-invariant differential geometric methods that take into account the matrix Lie group structure of the rigid-body transformations, our local descent method makes use of analytic gradients and Hessians, and a strictly descending fast step-size estimate to achieve significant performance improvements. As a second contribution, we present a two-phase stochastic geometric optimization algorithm for finding a stochastic global minimizer based on our earlier local optimizer. Numerical studies demonstrate the considerably enhanced robustness and efficiency of our algorithm over existing unit quaternion-based methods. |
| Author | Donghoon Kang Park, Frank C. Junhyoung Ha |
| Author_xml | – sequence: 1 surname: Junhyoung Ha fullname: Junhyoung Ha email: hjhdog1@gmail.com organization: Dept. of Cardiovascular Surg., Med. Sch., Harvard Univ., Boston, MA, USA – sequence: 2 surname: Donghoon Kang fullname: Donghoon Kang email: kimbab.moowoo@gmail.com organization: Imaging Media Center, Korea Inst. of Sci. & Technol., Seoul, South Korea – sequence: 3 givenname: Frank C. surname: Park fullname: Park, Frank C. email: fcp@snu.ac.kr organization: Dept. of Mech. & Aerosp. Eng., Seoul Nat. Univ., Seoul, South Korea |
| BookMark | eNp9kM1LwzAYh4NMcE7vgpeC5858tzmOsc3BYMImHkOapi6jbWaSIfrX29nhwYOnF16e5_34XYNB61oDwB2CY4SgeNwuZ2MMERtjBhkX8AIMEWNZKgTNB2AIcZanEFJ-Ba5D2EOIKENsCF4nySY6vVMhWp0saleoOlkfom3sl4rWtcmkfnPexl2TVM4ncWeS7YdL5141JtmYNnTNqapt4Xv82buiNs0NuKxUHcztuY7Ay3y2nT6lq_ViOZ2sUo0FimmuuNIZKXWmDVGlwTBTxtCcUiUKLBjORUmEKBjkhFclF9iwiqPupw7SOSEj8NDPPXj3fjQhyr07-rZbKVGWc0ERxnlH8Z7S3oXgTSW1jT_3Rq9sLRGUpxBlF6I8hSjPIXYi_CMevG2U__xPue8Va4z5xTNCMyIo-QadZn4- |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1109_TIE_2020_3009568 crossref_primary_10_1364_AO_58_005375 crossref_primary_10_1109_ACCESS_2019_2962074 crossref_primary_10_1109_LRA_2020_2988407 crossref_primary_10_1109_ACCESS_2017_2781698 crossref_primary_10_1109_TIM_2020_3013308 crossref_primary_10_1109_TMECH_2020_3019306 crossref_primary_10_1007_s00170_021_08591_1 crossref_primary_10_1007_s11548_020_02232_w crossref_primary_10_1109_TRO_2020_3043688 crossref_primary_10_1109_TSMC_2018_2810277 crossref_primary_10_1007_s10514_018_9744_3 crossref_primary_10_1109_LRA_2025_3533470 crossref_primary_10_1109_TCYB_2020_3015039 crossref_primary_10_1109_TRO_2022_3214350 crossref_primary_10_1109_TIM_2020_2987657 crossref_primary_10_1109_TMECH_2021_3103995 crossref_primary_10_1109_LRA_2017_2737485 crossref_primary_10_1109_TBME_2021_3055434 crossref_primary_10_1109_TNSRE_2022_3198400 crossref_primary_10_1109_TNSRE_2025_3585651 crossref_primary_10_1109_TIE_2022_3152026 crossref_primary_10_3390_s17040806 crossref_primary_10_1007_s11431_024_2861_8 crossref_primary_10_1007_s10915_025_02866_5 |
| Cites_doi | 10.1007/BF02592070 10.1109/TIE.2013.2297307 10.1177/02783649922066213 10.1016/j.automatica.2012.05.059 10.1007/978-3-642-00312-7_24 10.1109/TPAMI.2015.2469299 10.1109/70.326576 10.1109/70.704233 10.1109/70.313105 10.1109/TIE.2008.921255 10.1017/S0269964800000255 10.1109/TIE.2008.2010166 10.1017/S0263574713000040 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2015.2505690 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 2446 |
| ExternalDocumentID | 4045664331 10_1109_TIE_2015_2505690 7347394 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: MI Technology Innovation grantid: 10048320 – fundername: KIST Institutional Project – fundername: Defense Acquisition Program Administration BMRR Center funderid: 10.13039/501100003626 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c291t-8a6ac73dc7ce3ade207aee4844a9b295289d399b50636fd692e5f61948e48c833 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372645900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:15:13 EDT 2025 Sat Nov 29 01:31:30 EST 2025 Tue Nov 18 22:26:23 EST 2025 Tue Aug 26 16:42:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | stochastic global optimization robot sensor calibration Geometric optimization hand–eye calibration robot–world calibration |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-8a6ac73dc7ce3ade207aee4844a9b295289d399b50636fd692e5f61948e48c833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1786941228 |
| PQPubID | 85464 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIE_2015_2505690 ieee_primary_7347394 proquest_journals_1786941228 crossref_primary_10_1109_TIE_2015_2505690 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-April 2016-4-00 20160401 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-April |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref11 shah (ref10) 2012; 5 ref2 ref1 ref17 ref16 li (ref5) 2010; 5 ref8 ref7 ref9 dreesen (ref15) 0 ref4 ref3 ref6 |
| References_xml | – start-page: 1203 year: 0 ident: ref15 publication-title: Proc 16th IFAC Symp Syst Identif – ident: ref14 doi: 10.1007/BF02592070 – ident: ref3 doi: 10.1109/TIE.2013.2297307 – ident: ref7 doi: 10.1177/02783649922066213 – ident: ref12 doi: 10.1016/j.automatica.2012.05.059 – ident: ref16 doi: 10.1007/978-3-642-00312-7_24 – ident: ref11 doi: 10.1109/TPAMI.2015.2469299 – ident: ref6 doi: 10.1109/70.326576 – ident: ref4 doi: 10.1109/70.704233 – volume: 5 start-page: 1530 year: 2010 ident: ref5 article-title: Simultaneous robot-world and hand-eye calibration using dual-quaternions and Kronecker product publication-title: Int J Phys Sci – ident: ref1 doi: 10.1109/70.313105 – ident: ref8 doi: 10.1109/TIE.2008.921255 – ident: ref13 doi: 10.1007/BF02592070 – ident: ref17 doi: 10.1017/S0269964800000255 – ident: ref2 doi: 10.1109/TIE.2008.2010166 – ident: ref9 doi: 10.1017/S0263574713000040 – volume: 5 start-page: 15 year: 2012 ident: ref10 article-title: Solving the robot-world/hand-eye calibration problem using the Kronecker product publication-title: ASME J Mech Robot |
| SSID | ssj0014515 |
| Score | 2.3504899 |
| Snippet | In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices X,Y that best fit a set of equalities of... In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices [Formula Omitted] that best fit a set of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2434 |
| SubjectTerms | Bismuth Calibration Cameras geometric optimization hand-eye calibration Lie groups Noise measurement Optimization Optimization algorithms Robot sensing systems Robot sensor calibration robot-world calibration Sensors stochastic global optimization Yttrium |
| Title | A Stochastic Global Optimization Algorithm for the Two-Frame Sensor Calibration Problem |
| URI | https://ieeexplore.ieee.org/document/7347394 https://www.proquest.com/docview/1786941228 |
| Volume | 63 |
| WOSCitedRecordID | wos000372645900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridEoOXgS7tUnaJMchGwoyB5u4W0nTzA22VbZO_32TtisDRfBWwktb8pL3lfd-D-BWejJSRnM6NsLvUN9TjrRAkNaZ8CR3ySQHcX1m_T4fj8WgAvdlLYzWOks-0y37mN3lx4na2FBZmxHKiKBVqDLG8lqt8sbAfCZLV8QWMdY4fdsrSVe0R09dm8PltzJ1b6XvjgrKeqr8EMSZdukd_e-_juGwsCJRJ2f7CVT08hQOdrAF6_DWQcM0UVNpgZhRDu2PXoyAWBSVl6gzf09Ws3S6QMZwRcYQRKOvxOnZbC00NN6tGbSVW1G-R9Agbz1zBq-97ujh0Sm6KDgKCy91uAykYiRWTGkiY41dJrWmnFIpIix843HFxkqJfGOsBJM4EFj7Exvb4IZIcULOobZMlvoCkIjcCLMJ1cwXNHaJlMQM4dh1Y0mlxA1obxc2VAXEuO10MQ8zV8MVoWFFaFkRFqxowF054yOH1_iDtm6XvqQrVr0BzS3vwuL8rUOPcVuhizG__H3WFeybdwd5Dk4Taulqo69hT32ms_XqJtta39sQyl0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gmqgPfqERRe2DLyYOtraj6yMxEoiIJGDkbem6TkiAGRj679tug5BoTHxbmmu69Nr76N39DuBWOCKQWnNa5oXfoq4jLWGAII0z4QjPJlEG4tph3a43HPJeAe7XtTBKqTT5TFXNZxrLD2O5NE9lNUYoI5xuwbZLKXayaq11zEAvlCYsYoMZq92-VVDS5rVB-9FkcbnVVOEb-buhhNKuKj9Ecapfmof_-7MjOMjtSNTIGH8MBTU7gf0NdMESvDVQP4nlSBgoZpSB-6MXLSKmee0lakze4_k4GU2RNl2RNgXR4Cu2miZfC_W1f6sHTe1WkJ0S1Muaz5zCa_Nx8NCy8j4KlsTcSSxP1IVkJJRMKiJChW0mlKIepYIHmLva5wq1nRK42lypR2GdY-VG5nXD00TSI-QMirN4ps4B8cAOMIuoYi6noU2EIHoIh7YdCioELkNttbG-zEHGTa-LiZ86Gzb3NSt8wwo_Z0UZ7tYzPjKAjT9oS2br13T5rpehsuKdn9_Ahe8wz9ToYuxd_D7rBnZbg-eO32l3ny5hT69TzzJyKlBM5kt1BTvyMxkv5tfpMfsGi8rNpA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stochastic+Global+Optimization+Algorithm+for+the+Two-Frame+Sensor+Calibration+Problem&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Ha%2C+Junhyoung&rft.au=Kang%2C+Donghoon&rft.au=Park%2C+Frank+C&rft.date=2016-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=63&rft.issue=4&rft.spage=2434&rft_id=info:doi/10.1109%2FTIE.2015.2505690&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4045664331 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |