A Stochastic Global Optimization Algorithm for the Two-Frame Sensor Calibration Problem

In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices X,Y that best fit a set of equalities of the form A i X = YB i , i=1,..., N, where the {(A i , B i )} are pairs of homogeneous transformations obtained from sensor measurements. The m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial electronics (1982) Ročník 63; číslo 4; s. 2434 - 2446
Hlavní autoři: Junhyoung Ha, Donghoon Kang, Park, Frank C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0046, 1557-9948
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices X,Y that best fit a set of equalities of the form A i X = YB i , i=1,..., N, where the {(A i , B i )} are pairs of homogeneous transformations obtained from sensor measurements. The measurements are often subject to varying levels of noise and the resulting optimization can have numerous local minima that exhibit high sensitivity in the choice of optimization parameters. As a first contribution, we present a fast and numerically robust local optimization algorithm for the two-frame sensor calibration objective function. Using coordinate-invariant differential geometric methods that take into account the matrix Lie group structure of the rigid-body transformations, our local descent method makes use of analytic gradients and Hessians, and a strictly descending fast step-size estimate to achieve significant performance improvements. As a second contribution, we present a two-phase stochastic geometric optimization algorithm for finding a stochastic global minimizer based on our earlier local optimizer. Numerical studies demonstrate the considerably enhanced robustness and efficiency of our algorithm over existing unit quaternion-based methods.
AbstractList In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices X,Y that best fit a set of equalities of the form A i X = YB i , i=1,..., N, where the {(A i , B i )} are pairs of homogeneous transformations obtained from sensor measurements. The measurements are often subject to varying levels of noise and the resulting optimization can have numerous local minima that exhibit high sensitivity in the choice of optimization parameters. As a first contribution, we present a fast and numerically robust local optimization algorithm for the two-frame sensor calibration objective function. Using coordinate-invariant differential geometric methods that take into account the matrix Lie group structure of the rigid-body transformations, our local descent method makes use of analytic gradients and Hessians, and a strictly descending fast step-size estimate to achieve significant performance improvements. As a second contribution, we present a two-phase stochastic geometric optimization algorithm for finding a stochastic global minimizer based on our earlier local optimizer. Numerical studies demonstrate the considerably enhanced robustness and efficiency of our algorithm over existing unit quaternion-based methods.
In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices [Formula Omitted] that best fit a set of equalities of the form [Formula Omitted], [Formula Omitted], where the [Formula Omitted] are pairs of homogeneous transformations obtained from sensor measurements. The measurements are often subject to varying levels of noise and the resulting optimization can have numerous local minima that exhibit high sensitivity in the choice of optimization parameters. As a first contribution, we present a fast and numerically robust local optimization algorithm for the two-frame sensor calibration objective function. Using coordinate-invariant differential geometric methods that take into account the matrix Lie group structure of the rigid-body transformations, our local descent method makes use of analytic gradients and Hessians, and a strictly descending fast step-size estimate to achieve significant performance improvements. As a second contribution, we present a two-phase stochastic geometric optimization algorithm for finding a stochastic global minimizer based on our earlier local optimizer. Numerical studies demonstrate the considerably enhanced robustness and efficiency of our algorithm over existing unit quaternion-based methods.
Author Donghoon Kang
Park, Frank C.
Junhyoung Ha
Author_xml – sequence: 1
  surname: Junhyoung Ha
  fullname: Junhyoung Ha
  email: hjhdog1@gmail.com
  organization: Dept. of Cardiovascular Surg., Med. Sch., Harvard Univ., Boston, MA, USA
– sequence: 2
  surname: Donghoon Kang
  fullname: Donghoon Kang
  email: kimbab.moowoo@gmail.com
  organization: Imaging Media Center, Korea Inst. of Sci. & Technol., Seoul, South Korea
– sequence: 3
  givenname: Frank C.
  surname: Park
  fullname: Park, Frank C.
  email: fcp@snu.ac.kr
  organization: Dept. of Mech. & Aerosp. Eng., Seoul Nat. Univ., Seoul, South Korea
BookMark eNp9kM1LwzAYh4NMcE7vgpeC5858tzmOsc3BYMImHkOapi6jbWaSIfrX29nhwYOnF16e5_34XYNB61oDwB2CY4SgeNwuZ2MMERtjBhkX8AIMEWNZKgTNB2AIcZanEFJ-Ba5D2EOIKENsCF4nySY6vVMhWp0saleoOlkfom3sl4rWtcmkfnPexl2TVM4ncWeS7YdL5141JtmYNnTNqapt4Xv82buiNs0NuKxUHcztuY7Ay3y2nT6lq_ViOZ2sUo0FimmuuNIZKXWmDVGlwTBTxtCcUiUKLBjORUmEKBjkhFclF9iwiqPupw7SOSEj8NDPPXj3fjQhyr07-rZbKVGWc0ERxnlH8Z7S3oXgTSW1jT_3Rq9sLRGUpxBlF6I8hSjPIXYi_CMevG2U__xPue8Va4z5xTNCMyIo-QadZn4-
CODEN ITIED6
CitedBy_id crossref_primary_10_1109_TIE_2020_3009568
crossref_primary_10_1364_AO_58_005375
crossref_primary_10_1109_ACCESS_2019_2962074
crossref_primary_10_1109_LRA_2020_2988407
crossref_primary_10_1109_ACCESS_2017_2781698
crossref_primary_10_1109_TIM_2020_3013308
crossref_primary_10_1109_TMECH_2020_3019306
crossref_primary_10_1007_s00170_021_08591_1
crossref_primary_10_1007_s11548_020_02232_w
crossref_primary_10_1109_TRO_2020_3043688
crossref_primary_10_1109_TSMC_2018_2810277
crossref_primary_10_1007_s10514_018_9744_3
crossref_primary_10_1109_LRA_2025_3533470
crossref_primary_10_1109_TCYB_2020_3015039
crossref_primary_10_1109_TRO_2022_3214350
crossref_primary_10_1109_TIM_2020_2987657
crossref_primary_10_1109_TMECH_2021_3103995
crossref_primary_10_1109_LRA_2017_2737485
crossref_primary_10_1109_TBME_2021_3055434
crossref_primary_10_1109_TNSRE_2022_3198400
crossref_primary_10_1109_TNSRE_2025_3585651
crossref_primary_10_1109_TIE_2022_3152026
crossref_primary_10_3390_s17040806
crossref_primary_10_1007_s11431_024_2861_8
crossref_primary_10_1007_s10915_025_02866_5
Cites_doi 10.1007/BF02592070
10.1109/TIE.2013.2297307
10.1177/02783649922066213
10.1016/j.automatica.2012.05.059
10.1007/978-3-642-00312-7_24
10.1109/TPAMI.2015.2469299
10.1109/70.326576
10.1109/70.704233
10.1109/70.313105
10.1109/TIE.2008.921255
10.1017/S0269964800000255
10.1109/TIE.2008.2010166
10.1017/S0263574713000040
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2015.2505690
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 2446
ExternalDocumentID 4045664331
10_1109_TIE_2015_2505690
7347394
Genre orig-research
GrantInformation_xml – fundername: MI Technology Innovation
  grantid: 10048320
– fundername: KIST Institutional Project
– fundername: Defense Acquisition Program Administration BMRR Center
  funderid: 10.13039/501100003626
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c291t-8a6ac73dc7ce3ade207aee4844a9b295289d399b50636fd692e5f61948e48c833
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372645900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:15:13 EDT 2025
Sat Nov 29 01:31:30 EST 2025
Tue Nov 18 22:26:23 EST 2025
Tue Aug 26 16:42:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords stochastic global optimization
robot sensor calibration
Geometric optimization
hand–eye calibration
robot–world calibration
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-8a6ac73dc7ce3ade207aee4844a9b295289d399b50636fd692e5f61948e48c833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1786941228
PQPubID 85464
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TIE_2015_2505690
ieee_primary_7347394
proquest_journals_1786941228
crossref_primary_10_1109_TIE_2015_2505690
PublicationCentury 2000
PublicationDate 2016-April
2016-4-00
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-April
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
shah (ref10) 2012; 5
ref2
ref1
ref17
ref16
li (ref5) 2010; 5
ref8
ref7
ref9
dreesen (ref15) 0
ref4
ref3
ref6
References_xml – start-page: 1203
  year: 0
  ident: ref15
  publication-title: Proc 16th IFAC Symp Syst Identif
– ident: ref14
  doi: 10.1007/BF02592070
– ident: ref3
  doi: 10.1109/TIE.2013.2297307
– ident: ref7
  doi: 10.1177/02783649922066213
– ident: ref12
  doi: 10.1016/j.automatica.2012.05.059
– ident: ref16
  doi: 10.1007/978-3-642-00312-7_24
– ident: ref11
  doi: 10.1109/TPAMI.2015.2469299
– ident: ref6
  doi: 10.1109/70.326576
– ident: ref4
  doi: 10.1109/70.704233
– volume: 5
  start-page: 1530
  year: 2010
  ident: ref5
  article-title: Simultaneous robot-world and hand-eye calibration using dual-quaternions and Kronecker product
  publication-title: Int J Phys Sci
– ident: ref1
  doi: 10.1109/70.313105
– ident: ref8
  doi: 10.1109/TIE.2008.921255
– ident: ref13
  doi: 10.1007/BF02592070
– ident: ref17
  doi: 10.1017/S0269964800000255
– ident: ref2
  doi: 10.1109/TIE.2008.2010166
– ident: ref9
  doi: 10.1017/S0263574713000040
– volume: 5
  start-page: 15
  year: 2012
  ident: ref10
  article-title: Solving the robot-world/hand-eye calibration problem using the Kronecker product
  publication-title: ASME J Mech Robot
SSID ssj0014515
Score 2.3504899
Snippet In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices X,Y that best fit a set of equalities of...
In the two-frame sensor calibration problem, the objective is to find rigid-body homogeneous transformation matrices [Formula Omitted] that best fit a set of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2434
SubjectTerms Bismuth
Calibration
Cameras
geometric optimization
hand-eye calibration
Lie groups
Noise measurement
Optimization
Optimization algorithms
Robot sensing systems
Robot sensor calibration
robot-world calibration
Sensors
stochastic global optimization
Yttrium
Title A Stochastic Global Optimization Algorithm for the Two-Frame Sensor Calibration Problem
URI https://ieeexplore.ieee.org/document/7347394
https://www.proquest.com/docview/1786941228
Volume 63
WOSCitedRecordID wos000372645900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridEoOXgS7tUnaJMchGwoyB5u4W0nTzA22VbZO_32TtisDRfBWwktb8pL3lfd-D-BWejJSRnM6NsLvUN9TjrRAkNaZ8CR3ySQHcX1m_T4fj8WgAvdlLYzWOks-0y37mN3lx4na2FBZmxHKiKBVqDLG8lqt8sbAfCZLV8QWMdY4fdsrSVe0R09dm8PltzJ1b6XvjgrKeqr8EMSZdukd_e-_juGwsCJRJ2f7CVT08hQOdrAF6_DWQcM0UVNpgZhRDu2PXoyAWBSVl6gzf09Ws3S6QMZwRcYQRKOvxOnZbC00NN6tGbSVW1G-R9Agbz1zBq-97ujh0Sm6KDgKCy91uAykYiRWTGkiY41dJrWmnFIpIix843HFxkqJfGOsBJM4EFj7Exvb4IZIcULOobZMlvoCkIjcCLMJ1cwXNHaJlMQM4dh1Y0mlxA1obxc2VAXEuO10MQ8zV8MVoWFFaFkRFqxowF054yOH1_iDtm6XvqQrVr0BzS3vwuL8rUOPcVuhizG__H3WFeybdwd5Dk4Taulqo69hT32ms_XqJtta39sQyl0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gmqgPfqERRe2DLyYOtraj6yMxEoiIJGDkbem6TkiAGRj679tug5BoTHxbmmu69Nr76N39DuBWOCKQWnNa5oXfoq4jLWGAII0z4QjPJlEG4tph3a43HPJeAe7XtTBKqTT5TFXNZxrLD2O5NE9lNUYoI5xuwbZLKXayaq11zEAvlCYsYoMZq92-VVDS5rVB-9FkcbnVVOEb-buhhNKuKj9Ecapfmof_-7MjOMjtSNTIGH8MBTU7gf0NdMESvDVQP4nlSBgoZpSB-6MXLSKmee0lakze4_k4GU2RNl2RNgXR4Cu2miZfC_W1f6sHTe1WkJ0S1Muaz5zCa_Nx8NCy8j4KlsTcSSxP1IVkJJRMKiJChW0mlKIepYIHmLva5wq1nRK42lypR2GdY-VG5nXD00TSI-QMirN4ps4B8cAOMIuoYi6noU2EIHoIh7YdCioELkNttbG-zEHGTa-LiZ86Gzb3NSt8wwo_Z0UZ7tYzPjKAjT9oS2br13T5rpehsuKdn9_Ahe8wz9ToYuxd_D7rBnZbg-eO32l3ny5hT69TzzJyKlBM5kt1BTvyMxkv5tfpMfsGi8rNpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stochastic+Global+Optimization+Algorithm+for+the+Two-Frame+Sensor+Calibration+Problem&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Ha%2C+Junhyoung&rft.au=Kang%2C+Donghoon&rft.au=Park%2C+Frank+C&rft.date=2016-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=63&rft.issue=4&rft.spage=2434&rft_id=info:doi/10.1109%2FTIE.2015.2505690&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4045664331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon