Oops! It's Too Late. Your Autonomous Driving System Needs a Faster Middleware

Autonomous Driving (AD) has entered a period of rapid development in recent years. With the amount of sensors and control logics installed increasing tremendously to guarantee robustness, a big challenge is posed for AD middleware. Both the academia and the industry are eager for an investigation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 6; H. 4; S. 7301 - 7308
Hauptverfasser: Wu, Tianze, Wu, Baofu, Wang, Sa, Liu, Liangkai, Liu, Shaoshan, Bao, Yungang, Shi, Weisong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autonomous Driving (AD) has entered a period of rapid development in recent years. With the amount of sensors and control logics installed increasing tremendously to guarantee robustness, a big challenge is posed for AD middleware. Both the academia and the industry are eager for an investigation of the performance of middlewares in Autonomous Driving Vehicles (AVs). To fill this gap, we summarize typical communication scenarios of AVs and evaluate different communication mechanisms of three popular open-source middlewares comprehensively. Besides, we construct a benchmark pack named ComP which consists of a perception communication scenario and a group of real AD applications for researchers to assess middleware performance. Our findings provide useful guidelines for researchers and insightful optimization advice for designing middlewares.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2021.3097439